Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China
Andreas R., Zhang J. (2014): Characteristics of adsorption interactions of cadmium (II) onto humin from peat soil in freshwater and seawater media. Bulletin of Environmental Contamination and Toxicology, 92: 352–357.
https://doi.org/10.1007/s00128-014-1205-x
Blair G.J., Lefroy R.D.B., Lisle L. (1995): Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46: 1459–1466.
https://doi.org/10.1071/AR9951459
Bossuyt H., Six J., Hendrix P.F. (2005): Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry, 37: 251–258.
https://doi.org/10.1016/j.soilbio.2004.07.035
Bu N.S., Qu J.F., Li G., Zhao B., Zhang R.J., Fang C.M. (2015): Reclamation of coastal salt marshes promoted carbon loss from previously sequestered soil carbon pool. Ecological Engineering, 81: 335–339.
https://doi.org/10.1016/j.ecoleng.2015.04.051
Cao H., Jia M., Song J., Xun M., Fan W., Yang H. (2021): Rice-straw mat mulching improves the soil integrated fertility index of apple orchards on cinnamon soil and fluvo-aquic soil. Scientia Horticulturae, 278: 109837.
https://doi.org/10.1016/j.scienta.2020.109837
Chen S.B., Zhu Y.G., Ma Y.B. (2006): The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 134: 74–79.
https://doi.org/10.1016/j.jhazmat.2005.10.027
Chen Y., Senesi N., Schnitzer M. (1977): Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 41: 352–358.
https://doi.org/10.2136/sssaj1977.03615995004100020037x
Cui J., Li Z.X., Liu Z.T., Ge B.M., Fang C.M., Zhou C.L., Tang B.P. (2014): Physical and chemical stabilization of soil organic carbon along a 500-year cultived soil chronosequence originating from estuarine wetlands: Temporal patterns and land use effects. Agriculture, Ecosystems & Environment, 196: 10–20.
Cui T.T., Li Z.H., Wang S.J. (2017): Effects of in-situ straw decomposition on composition of humus and structure of humic acid at different soil depths. Journal of Soil & Sediments, 17: 2391–2399.
Davidson E.A., Ackerman I.L. (1993): Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20: 161–193.
https://doi.org/10.1007/BF00000786
Ensinas S.C., Serra A.P., Marchetti M.E., Silva E.F.d., Prado E.A.F.d., Lourente E.R.P., Altomar P.H., Potrich D.C., Martinez M.A., Conrad V.d.A., Jesus M.V., Kadri T.C.E.l. (2016): Cover crops affect on soil organic matter fractions under no till system. Australian Journal of Crop Science, 10: 503–512.
https://doi.org/10.21475/ajcs.2016.10.04.p7247x
Fontaine S., Barot S., Barré P., Bdioui N., Mary B., Rumpel C. (2007): Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450: 277–280.
https://doi.org/10.1038/nature06275
Fröberg M., Hansson K., Kleja D.B., Alavi G. (2011): Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden. Forest Ecology and Management, 262: 1742–1747.
https://doi.org/10.1016/j.foreco.2011.07.033
Goodrick I., Nelson P.N., Banabas M., Wurster C.M., Bird M.I. (2014): Soil carbon balance following conversion of grassland to oil palm. GCB Bioenergy, 7: 263–272.
https://doi.org/10.1111/gcbb.12138
Grace J., Mitchard E., Gloor E. (2014): Perturbations in the carbon budget of the tropics. Global Change Biology, 20: 3238–3255.
https://doi.org/10.1111/gcb.12600
Gu B., Schmitt J., Chen Z., Liang L., McCarthy J.F. (1994): Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology, 28: 38–46.
Horwath W.R., Kuzyakov Y. (2018): The potential for soils to mitigate climate change through carbon sequestration. Developments in Soil Science, 35: 61–92.
Hu Y.J., Xiang D., Veresoglou S.D., Chen F., Chen Y.L., Hao Z.P., Zhang X., Chen B.D. (2014): Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biology and Biochemistry, 77: 51–57.
https://doi.org/10.1016/j.soilbio.2014.06.014
Hu Y.F., Jiang S.L., Yuan S., Deng L.J., Xiao H.H., Shu X.Y., Chen G.D., Xia J.G. (2017a): Changes in soil organic carbon and its active fractions in different desertification stages of alpine-cold grassland in the eastern Qinghai–Tibet Plateau. Environmental Earth Sciences, 76: 348.
https://doi.org/10.1007/s12665-017-6684-8
Hu Y.G., Wang Z.R., Wang Q., Wang S.P., Zhang Z.S., Zhang Z.H., Zhao Y. (2017b): Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. Journal of Soils and Sediments, 17: 326–339.
https://doi.org/10.1007/s11368-016-1565-4
Jones M.B., Donnelly A. (2004): Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist, 164: 423–439.
https://doi.org/10.1111/j.1469-8137.2004.01201.x
Jones D.L., Willett V.B. (2006): Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38: 991–999
Kölbl A., Schad P., Jahn R., Amelung W., Bannert A., Cao Z.H., Fiedler S., Kalbitz K., Lehndorff E., Müller-Niggemann C., Schloter M., Schwark L., Vogelsang V., Wissing L., Kögel-Knabner I. (2014): Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma, 228: 67–89.
https://doi.org/10.1016/j.geoderma.2013.09.005
Lal R. (2001): World cropland soils as a source or sink for atmospheric carbon. Advances in Agronomy, 71: 145–191.
Lal R. (2004): Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623–1627.
https://doi.org/10.1126/science.1097396
Li C.F., Yue L.X., Kou Z.K., Zhang Z.S., Wang J.P., Cao C.G. (2012): Short-term effects of conservation management practices on soil labile organic carbon fractions under a rape–rice rotation in central China. Soil & Tillage Research, 119: 31–37.
Li Q.Q., Zhang H., Jiang X.Y., Luo Y.L., Wang C.Q., Yue T.X., Li B., Gao X.S. (2017): Spatially distributed modeling of soil organic carbon across China with improved accuracy. Journal of Advances in Modeling Earth Systems, 9: 1167–1185.
https://doi.org/10.1002/2016MS000827
Li S., Zhang S.R., Pu Y.L., Li T., Xu X.X., Jia Y.X., Deng O.P., Gong G.S. (2016): Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 155: 289–297.
https://doi.org/10.1016/j.still.2015.07.019
Li X.G., Li F.M., Rengel Z., Wang Z.F. (2006): Cultivation effects on temporal changes of organic carbon and aggregate stability in desert soils of Hexi Corridor region in China. Soil and Tillage Research, 91: 22–29.
https://doi.org/10.1016/j.still.2005.10.004
Li Y.F., Jiang P.K., Chang S.X., Wu J., Lin L. (2010): Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China. Journal of Soils and Sediments, 10: 739–747.
https://doi.org/10.1007/s11368-010-0188-4
Liu F., Wang D., Zhang B., Huang J. (2021): Concentration and biodegradability of dissolved organic carbon derived from soils: A global perspective. Science of the Total Environment, 754: 142378.
https://doi.org/10.1016/j.scitotenv.2020.142378
Liu S., Zhang Y., Zong Y., Hu Z., Wu S., Zhou J., Jin Y.G., Zou J.W. (2016): Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy, 8: 392–406.
https://doi.org/10.1111/gcbb.12265
Lu R.K. (2000): Chemical Analysis Method of Agricultural Soil. Beijing, China Agricultural Technology Press. (in Chinese)
Meng L., Ding W.X., Cai Z.C. (2005): Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry, 37: 2037–2045.
https://doi.org/10.1016/j.soilbio.2005.03.007
Navarrete I.A., Tsutsuki K., Navarrete R.A. (2010): Humus composition and the structural characteristics of humic substances in soils under different land uses in Leyte, Philippines. Soil Science and Plant Nutrition, 56: 289–296.
https://doi.org/10.1111/j.1747-0765.2010.00455.x
Ni J. (2002): Carbon storage in grasslands of China. Journal of Arid Environments, 50: 205–218.
https://doi.org/10.1006/jare.2001.0902
Oduor C.O., Karanja N.K., Onwonga R.N., Mureithi S.M., Pelster D., Nyberg G. (2018): Enhancing soil organic carbon, particulate organic carbon and microbial biomass in semi-arid rangeland using pasture enclosures. BMC Ecology, 18: 45.
https://doi.org/10.1186/s12898-018-0202-z
Post W.M., Emanuel W.R., Zinke P.J., Stangenberger A.G. (1982): Soil carbon pools and world life zones. Nature, 298: 156–159.
https://doi.org/10.1038/298156a0
Qi Y.C., Dong Y.S., Liu J.Y., Domroes M., Geng Y.B., Liu L.X., Liu X.R., Yang X.H. (2007): Effect of the conversion of grassland to spring wheat field on the CO2 emission characteristics in Inner Mongolia, China. Soil and Tillage Research, 94: 310–320.
https://doi.org/10.1016/j.still.2006.08.008
Ramesh T., Bolan N.S., Kirkham M.B., Wijesekara H., Kanchikerimath M., Rao C.S., Sandeep S., Rinklebe J., Choudhury Y.S.O.B.U., Wang H.L., Tang C.X., Wang X.J., Song Z.L., Freeman II.O.W. (2019): Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy, 156: 1–107.
Rasouli-Sadaghiani M.H., Barin M., Moghaddam S.S., Damalas C.A., Ghodrat K. (2018): Soil quality of an Iranian forest ecosystem after conversion to various types of land use. Environmental Monitoring and Assessment, 190: 1–9.
https://doi.org/10.1007/s10661-018-6815-z
Rocci K.S., Lavallee J.M., Stewart C.E., Cotrufo M.F. (2021): Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of the Total Environment, 793: 148569.
https://doi.org/10.1016/j.scitotenv.2021.148569
Sanderman J., Hengl T., Fiske G.J. (2017): Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114: 9575–9580.
https://doi.org/10.1073/pnas.1706103114
Saviozzi A., Levi-Minzi R., Riffaldi R. (1994): The effect of forty years of continuous corn cropping on soil organic matter characteristics. Plant and Soil, 160: 139–145.
https://doi.org/10.1007/BF00150355
Schad P. (2016): The International Soil Classification System WRB, Third Edition, 2014. In: Mueller L., Sheudshen A.K., Eulenstein F. (eds.): Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer: 563–571.
Shi Z., Crowell S., Luo Y., Moore B. (2018): Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9: 1–11.
https://doi.org/10.1038/s41467-018-04526-9
Singh G., Sharma R. (2017): Effects of different land use changes and spatial variation in rainfall on soil properties and soil carbon storage in Western Rajasthan, India. Annals of Advanced Agricultural Sciences, 1: 43–53.
https://doi.org/10.22606/as.2017.12001
Six J., Elliott E.T., Paustian K. (1999): Aggregate and soil organic matter dynamics under conventional and no‐tillage systems. Soil Science Society of America Journal, 63: 1350–1358.
https://doi.org/10.2136/sssaj1999.6351350x
Six J., Elliott E.T., Paustian K. (2000): Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32: 2099–2103.
https://doi.org/10.1016/S0038-0717(00)00179-6
Six J., Callewaert P., Lenders S., Gryze S.D., Morris S.J., Gregorich E.G., Paul E.A., Paustian K. (2002): Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66: 1981–1987.
https://doi.org/10.2136/sssaj2002.1981
Song Y.Y., Song C.C., Yang G.S., Miao Y.Q., Wang J., Guo Y. (2012): Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in Northeast China. Environmental Management, 50: 418–426.
https://doi.org/10.1007/s00267-012-9890-x
Soussana J.F., Tallec T., Blanfort V. (2010): Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal, 4: 334–350.
https://doi.org/10.1017/S1751731109990784
Spaccini R., Mbagwu J.S.C., Conte P., Piccolo A. (2006): Changes of humic substances characteristics from forested to cultivated soils in Ethiopia. Geoderma, 132: 9–19.
https://doi.org/10.1016/j.geoderma.2005.04.015
Steiner C., Teixeira W.G., Lehmann J., Nehls T., Macêdo J.L.V.d., Blum W.E., Zech W. (2007): Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291: 275–290.
https://doi.org/10.1007/s11104-007-9193-9
Sun C.Y., Liu J.S., Wang Y., Zheng N., Wu X.Q., Liu Q. (2012): Effect of long-term cultivation on soil organic carbon fractions and metal distribution in humic and fulvic acid in black soil, Northeast China. Soil Research, 50: 562–569.
https://doi.org/10.1071/SR12100
Vance E.D., Brookes P.C., Jenkinson D.S. (1987): An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19: 703–707.
https://doi.org/10.1016/0038-0717(87)90052-6
Villarino S.H., Studdert G.A., Baldassini P., Cendoya M.G., Ciuffoli L., Mastrángelo M., Piñeiro G. (2017): Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of the Total Environment, 575: 1056–1065.
https://doi.org/10.1016/j.scitotenv.2016.09.175
Wagner M., Schmidt W., Imhof L., Grübel A., Jähn C., Georgi D., Petzoldt H. (2016): Characterization and quantification of humic substances 2D-fluorescence by usage of extended size exclusion chromatography. Water Research, 93: 98–109.
https://doi.org/10.1016/j.watres.2016.01.050
Walkley A., Black I.A. (1934): An examination of the Deg-tjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37: 29–38.
https://doi.org/10.1097/00010694-193401000-00003
Wang L., Chen Z., Shang H., Wang J., Zhang P.Y. (2014): Impact of simulated acid rain on soil microbial community function in Masson pine seedlings. Electronic Journal of Biotechnology, 17: 199–203.
https://doi.org/10.1016/j.ejbt.2014.07.008
Wei X.R., Shao M.G., Gale W., Li L.H. (2014): Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Scientific Reports, 4: 1–6.
Wen L., Dong S., Li Y., Wang X., Li X., Shi J., Dong Q. (2013): The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil, 368: 329–340.
https://doi.org/10.1007/s11104-012-1500-4
Witzgall K., Vidal A., Schubert D.I., Höschen C., Schweizer S.A., Buegger F., Pouteau V., Chenu C., Mueller C.W. (2021): Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12: 1–10.
https://doi.org/10.1038/s41467-021-24192-8
Yan Z., Wu N. (2005): Rangeland privatization and its impacts on the Zoige wetlands on the Eastern Tibetan Plateau. Journal of Mountain Science, 2: 105–115.
https://doi.org/10.1007/BF02918326
Yang Y., Tilman D., Furey G., Lehman C. (2019): Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications, 10: 1–7.
https://doi.org/10.1038/s41467-019-08636-w
Zavarzina A.G., Leontievsky A.A., Golovleva L.A., Trofimov S.Y. (2004): Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: An in vitro study. Soil Biology and Biochemistry, 36: 359–369.
https://doi.org/10.1016/j.soilbio.2003.10.010
Zhang H., Wu P.B., Yin A.J., Yang X.H., Zhang M., Gao C. (2017): Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment, 592: 704–713.
https://doi.org/10.1016/j.scitotenv.2017.02.146
Zhang H., Tang J., Liang S., Li Z., Wang J., Wang S. (2018): Early thawing after snow removal and no straw mulching accelerates organic carbon cycling in a paddy soil in Northeast China. Journal of Environmental Management, 209: 336–345.
https://doi.org/10.1016/j.jenvman.2017.12.069