Strength properties of the Bambara kernel (Vigna subterranean) as influenced by the moisture content and kernel size

Nwakuba N.R., Chukwuezie O.C., Chikwue M.I., Ononogbo C., Dirioha C., Simo-Tagne M. (2022): Strength properties of the Bambara kernel (Vigna subterranean) as influenced by the moisture content and kernel size. Res. Agr. Eng., 68: 180–193.

download PDF

The fracture resistance of food grains is an essential piece of information required for the optimum design and development of agricultural post-harvest machinery. In this study, the strength properties of two varieties of Bambara kernels (TVSU-1395 and TVSU-1353) were examined in terms of the mean rupture force, absorbed energy, and deformation as affected by the moisture content and kernel size. To achieve this, a quasi-compressive force was applied on the two varieties of Bambara kernels of varying moisture contents (5.43%, 7.24%, 9.01%, 11.54%, and 13.62% wb) and kernel sizes (small, medium, and large) in between the loading compartments of a universal Testometric device at a 20 mm/min loading rate. The experiments take ten treatments with 20 replications subjected factorially to a completely randomised design (CRD) into consideration. The results revealed that the force needed to initiate the kernel fracture increased with an increase in the kernel size and moisture content from 101.44 to 235.06 N and 74.69 to 190.49 N for TVSU-1395 and TVSU-1353, respectively; whereas the energy at the kernel fracture point increased in a range of 0.074 to 0.401 J and 0.062 to 0.141 J for TVSU-1395 and TVSU-1353, respectively. The kernel deformation increased with the moisture content and size from 0.654 to 3.746 mm. These infer that the large kernel size of the TVSU-1395 variety at a 5.4% moisture content had greater compressive strength than the TVSU-1353 variety. The kernel moisture and size exhibited a strong correlation (0.958 ≤ R2 ≤ 0.997) with the strength parameters. The results of this study will help the food industry in designing energy-efficient post-harvest equipment for Bambara kernel processing. Further studies may consider the strength attributes of Bambara kernels at varying rates of loading, kernel orientations, and varieties to optimise the best process conditions for the post-harvest handling of different Bambara cultivars and develop labour-saving decorticating machines.

Abalone R., Cassinera A., Gaston A., Lara M. (2004): Some physical properties of amaranth seeds. Biosystems Engineering, 89: 109–117.
Alhassan G.A., Egbe M.O. (2013): Participatory rural appraisal of Bambara groundnut (Vigna subterranean (L.) Verdc.) production in Southern Guinea Savanna of Nigeria. Science and Education Centre of North America, 1: 64–71.
Alozie Y., Akpanabiatu M.I., Eyong E.U., Umoh I.B., Alozie G. (2009): Amino acid composition of Dioscorea dumetorum varieties. Pakistan Journal of Nutrition, 8: 103–105.
Altuntaş E., Özgöz E., Taşer Ö.F. (2005): Some physical properties of fenugreek (Trigonella foenum-graceum L.) seeds. Journal of Food Engineering, 71: 37–43.
Aremu A.K., Ademuwagun A.A., Ogunlade C.A. (2014): Effects of moisture content and loading orientation on some mechanical properties of African oil bean seed (Pentaclethra macrophylla Benth). African Journal of Agricultural Research, 9: 3504–3510.
AOAC (2005): Official Methods of Analysis. 12th Ed. Washington, DC., Association of Official Chemists.
Asoiro F.U., Nwoke O.A., Ezenne G.I. (2012): Some engineering properties of Prosopis Africana (Okyeye) seeds. Proceedings of the Nigerian Institution of Agricultural Engineers, 33: 298–310.
Aydin C. (2007): Some engineering properties of peanut and kernel. Journal of Food Engineering, 2: 810–816.
Balami A.A., Adebayo S.E., Adetoye E.Y. (2012): Determination of some engineering properties of sweet potato (Ipomoea batatas). Asian Journal of Natural & Applied Sciences, 1: 174–179.
Braga G.C., Couto S.M., Hara T., Neto J.T. (1999): Mechanical behaviour of macadamia nut under compression loading. Journal of Agricultural Engineering Research, 72: 239–245.
Dursun E., Güner M. (2003): Determination of mechanical behaviour of wheat and barley under compression loading. Tarım Bilimleri Dergisi, 9: 415–420.
Eke C.N., Asoegwu S.N., Nwandikom G.I. (2007): Physical properties of Jack bean (Canavalia ensiformis). Agricultural Engineering International: the CIGR e-journal, 4: 2–10.
Fumen G.A., Aiyejagbara E.F., Yusuf A.T. (2018): Determination of selected engineering properties of Bambara nut (Vigna subterranean (L.) Verdc.) seeds. Samaru Journal of Agricultural Education, 8: 1–11.
Guner M., Duysun E., Dursun I.G. (2003): Mechanical behaviour of hazelnut under compression loading. Biosystems Engineering, 85: 485–491.
Ibeawuchi I.I. (2007): Intercropping: A food production strategy for resource-poor farmers. Nature and Science, 5: 46–59.
Jibril A.N., Yadav K.C., Binni M.I., Kabir M.H. (2016): Study on effect of moisture content on thermal properties of bambara groundnut (Vigna subterranea L. Verdc.) seed. International Research Journal of Engineering and Technology, 3: 773–782.
Kalkan F., Kara M., Bastaban S., Turgut N. (2011): Strength and frictional properties of popcorn kernel as affected by moisture content. International Journal of Food Properties, 14: 1197–1207.
Kang Y.S., Spillman C.K., Steele J.L., Chung D.S. (1995): Mechanical properties of wheat. Transaction of ASAE, 38: 573–578.
Konak M., Carman K., Aydin C. (2002): Physical properties of chickpea seeds. Biosystems Engineering, 82: 73–78.
Mohsenin N.N. (1986): Physical Properties of Plant and Animal Materials. 2nd Ed. New York, Gordon and Breach Science Publishers: 15.
Mpotokwane S.M., Gaditlhatlhelwe E., Sebaka A., Jideani V.A. (2008): Physical properties of bambara groundnuts from Botswana. Journal of Food Engineering, 89: 93–98.
Ndirika V.I., Oyeleke O.O. (2006): Determination of selected physical properties and their relationships with moisture content for millet (Pennisetum glaucum L.). Applied Engineering in Agriculture, 22: 1–7.
Ndukwu M.C., Adama J.C. (2012): Selected moisture dependent physical properties of common beans, cowpea and yard-long beans. Proceedings of the Nigerian Institution of Agricultural Engineers, 33: 253–259.
Nwakuba N.R., Okafor V.C. (2020): Energy indices and drying behaviour of alligator pepper pods (Aframomum melegueta) as influenced by applied microwave power. Journal of Energy Technology and Environment, 2: 74–93.
Nwakuba N.R., Chukwuezie O.C., Asonye G.U., Asoegwu S.N. (2020): Influence of process parameters on the energy requirements and dried sliced tomato quality. Engineering Reports: e12123.
Nwakuba N., Ndukwe S., Paul T. (2021): Influence of product geometry and process variables on drying energy demand of vegetables: An experimental study. Journal of Food Process Engineering, 44: e13684.
Ogunsina B.S. (2014): Some engineering properties of drumstick (Moringa oleifera) seeds. Journal of Agricultural Engineering Technology, 22: 52–65.
Olaniyan A.M., Oje K. (2002): Some aspects of the mechanical properties of the shea nut. Biosystems Engineering, 81: 413–420.
Olayanju T.M.A., Lucas E.B. (2004): Mechanical behaviour of two benniseed (Sesamum indicum L.) cultivars under compression loading. Journal of Food Science and Technology, 41: 686–689.
Oluwole F.A., Abdulrahim A.T., Olalere R.K. (2007): Effect of moisture content on crackability of bambara groundnut using a centrifugal cracker. International Agrophysics, 21: 179–184.
Orhevba B.A. Adejumo B.A., Julius O.P. (2016): Determination of some selected engineering properties of Bambara nut (Vigna subterranea) related to the design of processing machines. IOSR Journal of Agriculture and Veterinary Science, 9: 42–47.
Paulsen M.R. (1978): Fracture resistance of soybeans to compressive loading. Transactions of the ASAE, 21: 1210–1216.
Pliestic S., Dobricevic N., Filipovic D., Gospodaric Z. (2006): Physical properties of filbert nut and kernel. Biosystems Engineering, 93: 173–178.
Sacilik K., Ozturk R., Keskin R. (2003): Some physical properties of hemp seed. Biosystems Engineering, 86: 191–198.
Sadowska J., Jeliński T., Błaszczak W. Konopka S., Fornal J., Rybiński W. (2013): The effect of seed size and microstructure on their mechanical properties and frictional behavior. International Journal of Food Properties, 16: 814–825.
Sahoo P.K., Srivastava A.P. (2002): Physical properties of okra seed. Biosystems Engineering, 83: 441–448.
Saiedirad M.H., Tabatabaeefar A., Borghei A., Mirsalehi M., Badii F., Ghasemi M. (2008): Effects of moisture content, seed size, loading rate and seed orientation on force and energy required for fracturing cumin seed (Cuminum cyminum Linn.) under quasi-static loading. Journal of Food Engineering, 86: 565–572.
Sangamithra A., Swamy G.J., Sorna P.R., Nandini K., Kannan K., Sasikala S., Suganya P. (2016): Moisture dependent physical properties of maize kernels. International Food Research Journal, 23: 109–115.
Seifi M.R., Alimardani R. (2010): Comparison of moisture-dependent physical and mechanical properties of two varieties of corn (Sc.704 and Dc.370). Australian Journal of Agricultural Engineering, 1: 170–178.
Steffe J.F. (1996): Rheological Methods in Food Processing Engineering. 2nd Ed. East Lansing, Freeman Press: 72–90.
Tavakoli H., Rajabipour A., Mohtasebi S.S. (2009): Moisture-dependent engineering properties soybean grains. Agricultural Engineering International: CIGR e-journal, 6: 1–14.
Uyeri C., Uguru H. (2018): Compressive resistance of groundnut kernels as influenced by kernel size. Journal of Engineering Research and Reports, 3: 1–7.
Vurayai R., Emongor V., Moseki B. (2011): Effect of water stress imposed at different growth and development stages on morphological traits and yield of Bambara groundnuts (Vigna subterranea L. Verdc). American Journal of Plant Physiology, 6: 17–27.
Vursavus K., Ozguven F. (2004): Mechanical behaviour of apricot pit under compression loading. Journal of Food Engineering, 65: 255–261.
Xiao Z., Zhang Z., Krebs C.J. (2015): Seed size and number make contrasting predictions on seed survival and dispersal dynamics: A case study from oil tea Camellia oleifera. Forest Ecology and Management, 343: 1–8.
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti