Prediction of the rhodinol content in Java citronella oil using NIR spectroscopy in the initial stage developing a spectral smart sensor system – Case report

https://doi.org/10.17221/87/2021-RAECitation:

Wahyudi D., Noor E., Setyaningsih D., Djatna T., Irmansyah I. (2022): Prediction of the rhodinol content in Java citronella oil using NIR spectroscopy in the initial stage developing a spectral smart sensor system – Case report. Res. Agr. Eng., 68: 216–222.

download PDF

The rhodinol content is an essential component in determining the citronella oil qualities. This study aimed to develop a model calibrated to predict the rhodinol content in citronella oil using near-infrared (NIR) spectroscopy. This research is the initial stage in developing a spectral smart sensor system that predicts the rhodinol content of citronella oil in the distillation and fractionating process. Citronella oil samples were scanned by NIRFlex liquid N-500 with a wavelength of 1 000–2 500 nm having an absorbance value (log 1/T). The accuracy of the prediction was achieved using the partial least square (PLS) model. Based on the NIR spectrum at a peak of around 1 620 nm, the rhodinol content in the citronella oil was estimated. The finest model to predict the rhodinol content was y = 0.9874x + 15.6439 with a standard error of the calibration set (SEC) = 2.78%, a standard error of the prediction set (SEP) = 2.88%, a ratio of the performance to the deviation (RPD) = 9.23, a coefficient of variation (CV) = 16.81%, and the correlation coefficient (r) = 0.99. The NIR and PLS models are possible to use for the initial stage in developing a spectral smart sensor system to determine the rhodinol content of citronella oils.

References:
Agustian E., Sulaswatty A., Tasrif, Laksmono J.A., Adilina I.B. (2007): Isolation of citronellal from citronella oil using bench scale fractionation unit. Journal of Agroindustrial Technology, 17: 49–53.
 
Almeida R.N., Soares R.P., Cassel E. (2018): Fractionation process of essential oils by batch distillation. Brazilian Journal of Chemical Engineering, 35: 1129–1140. https://doi.org/10.1590/0104-6632.20180353s20170216
 
Avizienis A. (2019): Essential Oils. San Diego, Thunder Bay Press.
 
Bec K.B., Grabska J., Huck C.W. (2020): Near-infrared spectroscopy in bio-applications. Molecules, 25: 2948. https://doi.org/10.3390/molecules25122948
 
Beneti S.C., Rosset E., Corazza M.L., Frizzo C.D., Luccio M.D., Oliveira J.V. (2011): Fractionation of citronella (Cymbopogon winterianus) essential oil and concentrated orange oil phase by batch vacuum distillation. Journal of Food Engineering, 102: 348–354. https://doi.org/10.1016/j.jfoodeng.2010.09.011
 
Bota W., Martosupono M., Rondonuwu F.S. (2015): Characterization of citronella oil products using near infrared spectroscopy (NIRs). Journal Faculty of Engineering Muhammadiyah University of Jakarta, 2: 1–7.
 
Cen H., He Y. (2007): Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science and Technology, 18: 72–83. https://doi.org/10.1016/j.tifs.2006.09.003
 
Chandra S., Krishanthi M., Octavian P.J., Postolache A. (2019): Smart Sensors, Measurement and Instrumentation: Modern Sensing Technologies. Sidney, Springer.
 
Eden W.T., Alighiri D., Cahyono E., Supardi K.I., Wijayati N. (2018): Fractionation of Java citronella oil and citronellal purification by batch vacuum fractional distillation. IOP Conference Series: Materials Science and Engineering, 349: 012067. https://doi.org/10.1088/1757-899X/349/1/012067
 
Hutchins D.A. (1997): Data Acquisition for Sensor Systems. London, Springer Science + Business Media.  https://doi.org/10.1016/S0041-624X(97)88949-4
 
Iqbal Z., Herodian S., Widodo S. (2019): Development of partial least square (PLS) prediction model to measure the ripeness of oil palm fresh fruit bunch (FFB) by using NIR Spectroscopy. IOP Conference Series: Earth and Environmental Science, 347: 012079. https://doi.org/10.1088/1755-1315/347/1/012079
 
Jumaah A.M.S., Xue J. (2019): Developing intelligent machines with smart sensors for a smart factory. International Journal of Scientific and Research Publications, 9: 221–230.
 
Kurniawan F., Budiastra I.W., Sutrisno, Widyotomo S. (2019): Classification of arabica Java coffee beans based on their origin using nir spectroscopy. IOP Conference Series: Earth and Environmental Science, 309: 012006. https://doi.org/10.1088/1755-1315/309/1/012006
 
Novianty I., Seminar K.B., Irzaman, Budiastra I.W. (2020): Improving the accuracy of near-infrared (NIR) spectroscopy method to predict the oil content of oil palm fresh fruits. IOP Conference Series: Earth and Environmental Science, 460: 012004. https://doi.org/10.1088/1755-1315/460/1/012004
 
Pfeffer S., Schulz H., Kruger H. (2001): Potential of near infrared spectroscopy ( NIRS ) for rapid quality evaluation of essential oils. ISEO Journal, 32: 93–94.
 
Popescu D., Gharbi A., Stefanoiu D., Borne P. (2017): Process Control Design for Industrial Applications. Hoboken, John Wiley & Sons, Inc.
 
Purwanto Y.A., Zainal P.W., Ahmad U., Sutrisno M., Maki-no Y., Oshita S., Kawagoe Y., Kuroki S. (2013): Non destructive prediction of pH in mango fruit cv. Gedong Gincu using NIR spectroscopy. International Journal of Engineering and Technology, 13: 70–73.
 
Rondonuwu F.S., Setiawan A. (2020): Determination of glucose content with a concentration within the physiological range by FT-NIR spectroscopy in a trans-reflectance mode. AIP Conference Proceedings, 2237: 020013.
 
Setyaningsih D., Roselly F., Muna N. (2020): Formulation of essential oils as mosquito repellent. Journal of Tropical Pharmacy and Chemistry, 5: 71–79. https://doi.org/10.25026/jtpc.v5i2.231
 
Singh C.B., Jayas D.S. (2012): 5 - Optical sensors and online spectroscopy for automated quality and safety inspection of food products. Robotics and Automation in the Food Industry: Current and Future Technologies, 2013: 111–129.
 
Sulaswatty A., Rusli M.S., Abimanyu H., Tursiloadi S. (2019): Quo Vadis Citronella Oil and Its Derivative Products. Jakarta, LIPI Press.
 
Tisserand R., Young R. (2014): Essential Oil Composition. In: Williamson E.M. (ed.): Essential Oil Safety. London, Elsevier: 5–22.
 
Tsimogiannis D., Oreopoulou V. (2018): A kinetic study of essential oil components distillation for the recovery of carvacrol rich fractions. Journal of Applied Research on Medicinal and Aromatic Plants, 9: 117–123. https://doi.org/10.1016/j.jarmap.2018.03.006
 
Verma R.S., Verma S.K., Tandon S., Padalia R.C., Darokar M.P. (2020): Chemical composition and antimicrobial activity of Java citronella (Cymbopogon winterianus Jowitt ex Bor) essential oil extracted by different methods. Journal of Essential Oil Research, 32: 449–455. https://doi.org/10.1080/10412905.2020.1787885
 
Wany A., Kumar A., Nallapeta S., Jha S., Nigam V.K., Pandey D.M. (2014): Extraction and characterization of essential oil components based on geraniol and citronellol from Java citronella (Cymbopogon winterianus Jowitt). Plant Growth Regulation, 73: 133–145. https://doi.org/10.1007/s10725-013-9875-7
 
Windawati V., Purwanto Y.A., Budiastra I.W., Widodo S., Kuroki S. (2019): Prediction of chemical content in patchouli oil (Pogostemon cablin Benth) by portable NIR spectroscopy. IOP Conference Series: Materials Science and Engineering, 557: 012087. https://doi.org/10.1088/1757-899X/557/1/012087
 
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti