Viability of some African agricultural by-products as a feedstock for solid biofuel production

Bappah M., Bradna J., Malaťák J., Vaculík P. (2022): Viability of some African agricultural by-products as a feedstock for solid biofuel production. Res. Agr. Eng., 68: 210–215.

download PDF

As a source of renewable energy, agricultural by-products after pre-processing and cleaning in post-harvest lines can be used as a feedstock for the production of pellets or briquettes. This can be achieved by determining the physicochemical properties of the by-products. Groundnut pods, maize cobs and the husks of rice, millet and sorghum were considered, and their properties were determined, which were then compared with the standard properties of pellets and briquettes to ascertain their viability as a feedstock for the pellet or briquette production. The by-products were transported from Nigeria to the Czech Republic and the research was carried out at the Department of Technological Equipment of Buildings, the Faculty of Engineering, Czech University of Life Sciences Prague. The moisture content, ash content, calorific value, nitrogen content and sulfur content were the properties considered of the by-products. Groundnut pods and maize cobs with a calorific value of 17.48 MJ·kg–1 and 16.25 MJ·kg–1, an ash content of 3.46% weight and 1.79% weight, a nitrogen content of 1.24% weight and 0.44% weight and a moisture content of 7.92 weight and 7.56% weight, respectively, were discovered to fulfill all the requirements for graded non-woody pellets A. With the exception of rice husks and millet husks, which were discovered to have high ash contents and low calorific values, all the by-products fulfilled the standard requirements for one or more grade of pellet/briquette. They can, therefore, be used as a good feedstock for pellet or briquette production.

Akhmedov S., Ivanova T., Krepl V., Muntean A. (2017): Research on solid biofuels from cotton waste biomass – Alternative for Tajikistan's energy sector development. Agronomy Research, 15: 1846–1855.
Bappah M., Bradna J., Velebil J., Malatak J. (2019): The potential of energy recovery from by-products of small agricultural farms in Nigeria. Agronomy Research, 17: 2180–2186.
Bradna J., Malaťák J. (2016): Flue gases thermal emission concentration during waste biomass combustion in small combustion device with manual fuel supply. Research in Agricultural Engineering, 62: 1–7.
Bradna J., Malaťák J., Hájek D. (2016): The properties of wheat straw combustion and use of fly ash as a soil amendment. Agronomy Research, 14: 1257–1265.
Caraschi J.C., Goveia D., Dezajacomo G., Prates G.A. (2019): Evaluation of biomass properties for the production of solid biofuels. Floresta e Ambiente, 26: e20180433.
Chen L., Xing L., Han L. (2009): Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renewable and Sustainable Energy Reviews, 13: 2689–2695.
Černý D., Malaťák J., Bradna J. (2016): Influence of biofuel moisture content on combustion and emission characteristics of stove. Agronomy Research, 14: 725–732.
Demirbas A. (2004): Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30: 219–230.
Díaz-Ramírez M., Sebastián F., Royo J., Rezeau A. (2014): Influencing factors on NOX emission level during grate conversion of three pelletized energy crops. Applied Energy, 115: 360–373.
Gendek A., Aniszewska M., Malaťák J., Velebil J. (2018): Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy, 117: 173–179.
Gürdil G.A.K., Selvi K.C., Malaták J., Pinar Y. (2009): Biomass utilization for thermal energy. Agricultural Mechanization in Asia, Africa Latin & America, 40: 80–85.
Hnilička F., Hniličková H., Hejnák V. (2015): Use of combustion methods for calorimetry in the applied physiology of plants. Journal of Thermal Analysis and Calorimetry, 120: 411–417.
Hnilička F., Hniličková H., Kudrna J., Kraus K., Kukla J., Kuklová M. (2020): Combustion calorimetry and its application in the assessment of ecosystems. Journal of Thermal Analysis and Calorimetry, 142: 771–781.
International Organization for Standardization (2015): ISO 18122:2015. Solid biofuels — Determination of ash content. Geneva, Switzerland.
International Organization for Standardization (2020): ISO 1928:2020. Coal and coke — Determination of gross calorific value. Geneva, Switzerland.
International Organization for Standardization (2021a): ISO 17225-2. Fuel specifications and classes – Part 2: Graded wood pellets. Geneva, Switzerland.
International Organization for Standardization (2021b): ISO 17225-6. Solid biofuels – Fuel specifications and classes – Part 6: Graded non-woody pellets. Geneva, Switzerland.
International Organization for Standardization (2021c): ISO 17225-3. Solid biofuels — Fuel specifications and classes Part 3: Graded wood briquettes. Geneva, Switzerland.
International Organization for Standardization (2021d): ISO 17225-7. Solid biofuels – Fuel specifications and classes Part 7: Graded non-woody briquettes. Geneva, Switzerland.
Ivanova T., Mendoza Hernández A.H., Bradna J., Cusimamani E.F., Montoya J.C.G., Espinel D.A.A. (2018): Assessment of Guava (Psidium guajava L.) wood biomass for briquettes' production. Forests, 9: 613.
Jenkins B.M., Baxter L.L., Miles T.R. Jr., Miles T.R. (1998): Combustion properties of biomass. Fuel Processing Technology, 54: 17–46.
Jenkins D. (2010): Wood Pellet Heating Systems: The Earthscan Expert Handbook on Planning, Design and Installation. London, Routledge.
Johansson L.S., Leckner B., Gustavsson L., Cooper D., Tullin C., Potter A. (2004): Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmospheric Environment, 38: 4183–4195.
Juszczak M. (2016): Comparison of CO and NOx concentrations from a 20 kW boiler for periodic and constant wood pellet supply. Environment Protection Engineering, 42: 95–107.
Kraszkiewicz A., Kachel-Jakubowska M., Niedziółka I. (2015): Analysis of selected physical and chemical properties of plant biomass of agricultural origin in terms of its energy use. Bulgarian Journal of Agricultural Science, 21: 1295–1299.
Lenerts A., Popluga D., Naglis-Liepa K. (2019): Benchmarking the GHG emissions intensities of crop and livestock–derived agricultural commodities produced in Latvia. Agronomy Research, 17: 1942–1952.
Malat’ák J., Velebil J., Bradna J. (2018): Specialty types of waste paper as an energetic commodity. Agronomy Research, 16: 534–542.
Malaťák J., Bradna J., Velebil J. (2017): The dependence of COx and NOx emission concentrations on the excess air coefficient during combustion of selected agricultural briquetted by-products. Agronomy Research, 15: 1084–1093.
Malaťák J., Velebil J., Bradna J., Gendek A., Tamelová B. (2020a): Evaluation of CO and NOX emissions in real-life operating conditions of herbaceous biomass briquettes combustion. Acta Technologica Agriculturae, 23: 53–59.
Malaťák J., Gendek A., Aniszewska M., Velebil J. (2020b): Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel, 276: 118001.
McKendry P. (2002): Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology, 83: 37–46.
Nunes L.J.R., Matias J.C.O., Catalão J.P.S. (2016): Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53: 235–242.
Obernberger I., Brunner T., Bärnthaler G. (2006): Chemical properties of solid biofuels-significance and impact. Biomass and Bioenergy, 30: 973–982.
Obernberger I., Thek G. (2004): Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, 27: 653–669.
Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. (2019): Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.). Biomass and Bioenergy, 127: 105290.
Pňakovič Ľ., Dzurenda L. (2015): Combustion characteristics of fallen fall leaves from ornamental trees in city and forest parks. BioResources, 10: 5563–5572.
Szemmelveisz K., Szucs I., Palotás Á.B., Winkler L., Eddings E.G. (2009): Examination of the combustion conditions of herbaceous biomass. Fuel Processing Technology, 90: 839–847.
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. (2010): An overview of the chemical composition of biomass. Fuel, 89: 913–33.
Wang L., Hustad J.E., Skreiberg Ø., Skjevrak G., Grønli M. (2012): A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia, 20: 20–29.
Winter F., Wartha C., Hofbauer H. (1999): NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresource Technology, 70: 39–49.
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti