Viability of some African agricultural by-products as a feedstock for solid biofuel production
Akhmedov S., Ivanova T., Krepl V., Muntean A. (2017): Research on solid biofuels from cotton waste biomass – Alternative for Tajikistan's energy sector development. Agronomy Research, 15: 1846–1855.
Bappah M., Bradna J., Velebil J., Malatak J. (2019): The potential of energy recovery from by-products of small agricultural farms in Nigeria. Agronomy Research, 17: 2180–2186.
Bradna J., Malaťák J. (2016): Flue gases thermal emission concentration during waste biomass combustion in small combustion device with manual fuel supply. Research in Agricultural Engineering, 62: 1–7.
https://doi.org/10.17221/36/2014-RAE
Bradna J., Malaťák J., Hájek D. (2016): The properties of wheat straw combustion and use of fly ash as a soil amendment. Agronomy Research, 14: 1257–1265.
Caraschi J.C., Goveia D., Dezajacomo G., Prates G.A. (2019): Evaluation of biomass properties for the production of solid biofuels. Floresta e Ambiente, 26: e20180433.
https://doi.org/10.1590/2179-8087.043318
Chen L., Xing L., Han L. (2009): Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renewable and Sustainable Energy Reviews, 13: 2689–2695.
https://doi.org/10.1016/j.rser.2009.06.025
Černý D., Malaťák J., Bradna J. (2016): Influence of biofuel moisture content on combustion and emission characteristics of stove. Agronomy Research, 14: 725–732.
Demirbas A. (2004): Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30: 219–230.
https://doi.org/10.1016/j.pecs.2003.10.004
Díaz-Ramírez M., Sebastián F., Royo J., Rezeau A. (2014): Influencing factors on NOX emission level during grate conversion of three pelletized energy crops. Applied Energy, 115: 360–373.
https://doi.org/10.1016/j.apenergy.2013.11.011
Gendek A., Aniszewska M., Malaťák J., Velebil J. (2018): Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy, 117: 173–179.
https://doi.org/10.1016/j.biombioe.2018.07.025
Gürdil G.A.K., Selvi K.C., Malaták J., Pinar Y. (2009): Biomass utilization for thermal energy. Agricultural Mechanization in Asia, Africa Latin & America, 40: 80–85.
Hnilička F., Hniličková H., Hejnák V. (2015): Use of combustion methods for calorimetry in the applied physiology of plants. Journal of Thermal Analysis and Calorimetry, 120: 411–417.
https://doi.org/10.1007/s10973-014-3716-4
Hnilička F., Hniličková H., Kudrna J., Kraus K., Kukla J., Kuklová M. (2020): Combustion calorimetry and its application in the assessment of ecosystems. Journal of Thermal Analysis and Calorimetry, 142: 771–781.
https://doi.org/10.1007/s10973-020-09961-9
International Organization for Standardization (2015): ISO 18122:2015. Solid biofuels — Determination of ash content. Geneva, Switzerland.
International Organization for Standardization (2020): ISO 1928:2020. Coal and coke — Determination of gross calorific value. Geneva, Switzerland.
International Organization for Standardization (2021a): ISO 17225-2. Fuel specifications and classes – Part 2: Graded wood pellets. Geneva, Switzerland.
International Organization for Standardization (2021b): ISO 17225-6. Solid biofuels – Fuel specifications and classes – Part 6: Graded non-woody pellets. Geneva, Switzerland.
International Organization for Standardization (2021c): ISO 17225-3. Solid biofuels — Fuel specifications and classes Part 3: Graded wood briquettes. Geneva, Switzerland.
International Organization for Standardization (2021d): ISO 17225-7. Solid biofuels – Fuel specifications and classes Part 7: Graded non-woody briquettes. Geneva, Switzerland.
Ivanova T., Mendoza Hernández A.H., Bradna J., Cusimamani E.F., Montoya J.C.G., Espinel D.A.A. (2018): Assessment of Guava (Psidium guajava L.) wood biomass for briquettes' production. Forests, 9: 613.
https://doi.org/10.3390/f9100613
Jenkins B.M., Baxter L.L., Miles T.R. Jr., Miles T.R. (1998): Combustion properties of biomass. Fuel Processing Technology, 54: 17–46.
https://doi.org/10.1016/S0378-3820(97)00059-3
Jenkins D. (2010): Wood Pellet Heating Systems: The Earthscan Expert Handbook on Planning, Design and Installation. London, Routledge.
Johansson L.S., Leckner B., Gustavsson L., Cooper D., Tullin C., Potter A. (2004): Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmospheric Environment, 38: 4183–4195.
https://doi.org/10.1016/j.atmosenv.2004.04.020
Juszczak M. (2016): Comparison of CO and NOx concentrations from a 20 kW boiler for periodic and constant wood pellet supply. Environment Protection Engineering, 42: 95–107.
https://doi.org/10.37190/epe160308
Kraszkiewicz A., Kachel-Jakubowska M., Niedziółka I. (2015): Analysis of selected physical and chemical properties of plant biomass of agricultural origin in terms of its energy use. Bulgarian Journal of Agricultural Science, 21: 1295–1299.
Lenerts A., Popluga D., Naglis-Liepa K. (2019): Benchmarking the GHG emissions intensities of crop and livestock–derived agricultural commodities produced in Latvia. Agronomy Research, 17: 1942–1952.
Malat’ák J., Velebil J., Bradna J. (2018): Specialty types of waste paper as an energetic commodity. Agronomy Research, 16: 534–542.
Malaťák J., Bradna J., Velebil J. (2017): The dependence of COx and NOx emission concentrations on the excess air coefficient during combustion of selected agricultural briquetted by-products. Agronomy Research, 15: 1084–1093.
Malaťák J., Velebil J., Bradna J., Gendek A., Tamelová B. (2020a): Evaluation of CO and NOX emissions in real-life operating conditions of herbaceous biomass briquettes combustion. Acta Technologica Agriculturae, 23: 53–59.
https://doi.org/10.2478/ata-2020-0009
Malaťák J., Gendek A., Aniszewska M., Velebil J. (2020b): Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel, 276: 118001.
https://doi.org/10.1016/j.fuel.2020.118001
McKendry P. (2002): Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology, 83: 37–46.
https://doi.org/10.1016/S0960-8524(01)00118-3
Nunes L.J.R., Matias J.C.O., Catalão J.P.S. (2016): Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53: 235–242.
https://doi.org/10.1016/j.rser.2015.08.053
Obernberger I., Brunner T., Bärnthaler G. (2006): Chemical properties of solid biofuels-significance and impact. Biomass and Bioenergy, 30: 973–982.
https://doi.org/10.1016/j.biombioe.2006.06.011
Obernberger I., Thek G. (2004): Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, 27: 653–669.
https://doi.org/10.1016/j.biombioe.2003.07.006
Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. (2019): Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.). Biomass and Bioenergy, 127: 105290.
https://doi.org/10.1016/j.biombioe.2019.105290
Pňakovič Ľ., Dzurenda L. (2015): Combustion characteristics of fallen fall leaves from ornamental trees in city and forest parks. BioResources, 10: 5563–5572.
https://doi.org/10.15376/biores.10.3.5563-5572
Szemmelveisz K., Szucs I., Palotás Á.B., Winkler L., Eddings E.G. (2009): Examination of the combustion conditions of herbaceous biomass. Fuel Processing Technology, 90: 839–847.
https://doi.org/10.1016/j.fuproc.2009.03.001
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. (2010): An overview of the chemical composition of biomass. Fuel, 89: 913–33.
https://doi.org/10.1016/j.fuel.2009.10.022
Wang L., Hustad J.E., Skreiberg Ø., Skjevrak G., Grønli M. (2012): A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia, 20: 20–29.
https://doi.org/10.1016/j.egypro.2012.03.004
Winter F., Wartha C., Hofbauer H. (1999): NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresource Technology, 70: 39–49.
https://doi.org/10.1016/S0960-8524(99)00019-X