Efficiency of selenium biofortification of spring wheat: the role of soil properties and organic matter amendment

https://doi.org/10.17221/357/2022-PSECitation:

Mrština T., Praus L., Kaplan L., Száková J., Tlustoš P. (2022): Efficiency of selenium biofortification of spring wheat: the role of soil properties and organic matter amendment. Plant Soil Environ., 68: 572–579.

download PDF

The effect of soil selenate application to two different soils (Phaeozem and Cambisol) on biomass yield and selenium (Se) uptake by spring wheat (Triticum aestivum L.) was investigated in a pot experiment. Additionally, organic amendment (fugate, i.e. liquid by-product from the biogas plant) was applied to assess (i) the effect of organic matter on the bioavailability of Se and (ii) the fugate (containing 2.3 mg/kg of Se) as a potential source of Se for plants. Selenium was applied at two levels: 6.4 µg/kg (Se1) and 32 µg/kg (Se2) of soil. The efficiency of biofortification and the distribution of selenium within individual plant compartments were assessed in this case. The highest Se contents in the grain were achieved in the treatments receiving NPK fertiliser together with selenate, 455 µg/kg (Se1) and 2 721 µg/kg (Se2) when wheat was planted in Phaeozem. Fugate in co-application with selenate significantly reduced Se content in wheat plants as compared to treatments enriched solely with selenate. The lower Se contents in the wheat plants growing in Phaeozem were due to the biodilution effect, whereas in Cambisol, the decrease in wheat Se uptake was not clearly driven by a particular factor.

References:
Abrams M.M., Burau R.G. (1989): Fractionation of selenium and detection of selenomethionine in a soil extract. Communications in Soil Science and Plant Analysis, 20: 221–237. https://doi.org/10.1080/00103628909368079
 
Abubaker J., Risberg K., Pell M. (2012): Biogas residues as fertilisers – effects on wheat growth and soil microbial activities. Applied Energy, 99: 126–134. https://doi.org/10.1016/j.apenergy.2012.04.050
 
Ajwa H.A., Bañuelos G.S., Mayland H.F. (1998): Selenium uptake by plants from soils amended with inorganic and organic materials. Journal of Environmental Quality, 27: 1218–1227. https://doi.org/10.2134/jeq1998.00472425002700050029x
 
Akhiar A. (2017): Characterization of Liquid Fraction of Digestates after Solid-Liquid Separation from Anaerobic Co-digestion Plants. Chemical and Process Engineering. Montpellier, University of Montpellier. https://doi.org/10.1016/j.wasman.2016.11.005
 
Cakmak I., Kutman U.B. (2017): Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 69: 172–180. https://doi.org/10.1111/ejss.12437
 
Darcheville O., Février L., Haichar F.Z., Berge O., Martin-Garin A., Renault P. (2008): Aqueous, solid and gaseous partitioning of selenium in an oxic sandy soil under different microbiological states. Journal of Environmental Radioactivity, 99: 981–992. https://doi.org/10.1016/j.jenvrad.2007.11.006
 
Dhillon K.S., Dhillon S.K., Dogra R. (2010): Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere, 78: 548–556. https://doi.org/10.1016/j.chemosphere.2009.11.015
 
Ditl P., Nápravník J., Šulc R. (2017): Chemical pre-treatment of fugate from biogas stations. Biomass and Bioenergy, 96: 180–182. https://doi.org/10.1016/j.biombioe.2016.12.005
 
Ducsay L., Zapletalová A., Hozlár P., Černý I., Varga L., Slepčan M. (2020): Effects of selenium on macro- and micro nutrients and selected qualitative parameters of oat (Avena sativa L.). Slovak Journal of Food Sciences, 14: 619–624. https://doi.org/10.5219/1400
 
Ducsay L., Zapletalová A., Slepčan M., Vicianová M., Hozlár P., Bušo R. (2021): Selenium effect on wheat grain yield and quality applied in different growth stages. Plant, Soil and Environment, 67: 147–153.
 
Elrashidi M.A., Adriano D.C., Workman S.M., Lindsay W.L. (1987): Chemical equilibria of selenium in soils: a theoretical development. Soil Science, 144: 141–152. https://doi.org/10.1097/00010694-198708000-00008
 
Fernández-Martínez A., Charlet L. (2009): Selenium environmental cycling and bioavailability: a structural chemist point of view. Reviews in Environmental Science and Bio/Technology, 8: 81–110. https://doi.org/10.1007/s11157-009-9145-3
 
Fordyce F.M. (2013): Selenium deficiency and toxicity in the environment. In: Selinus O. (ed.): Essentials of Medical Geology. Revised Edition. Dordrecht, Springer Netherlands, 375–416. ISBN: 978-94-007-4375-5
 
Hawkesford M.J., Zhao F.J. (2007): Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 46: 282–292. https://doi.org/10.1016/j.jcs.2007.02.006
 
Hossain A., Skalicky M., Brestic M., Maitra S., Sarkar S., Ahmad Z., Vemuri H., Garai S., Mondal M., Bhatt R., Kumar P., Banerjee P., Saha S., Islam T., Laing A.M. (2021): Selenium biofortification: roles, mechanisms, responses and prospects. Molecules, 26: 881. https://doi.org/10.3390/molecules26040881
 
Huang Y.Z., Hu Y., Liu Y.X. (2008): Interactions between sulfur and selenium uptake by corn in solution culture. Journal of Plant Nutrition, 31: 43–54. https://doi.org/10.1080/01904160701741826
 
Keskinen R., Turakainen M., Hartikainen H. (2010): Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant and Soil, 333: 301–313. https://doi.org/10.1007/s11104-010-0345-y
 
Kolář L., Kužel S., Peterka J., Borová-Batt J. (2010): Agrochemical value of the liguid phase of wastes from fermenters during biogas production. Plant, Soil and Environment, 56: 23–27. https://doi.org/10.17221/180/2009-PSE
 
Koszel M., Lorencowicz E. (2015): Agricultural use of biogas digestate as a replacement fertilizers. Agriculture and Agricultural Science Procedia, 7: 119–124. https://doi.org/10.1016/j.aaspro.2015.12.004
 
Li Z., Liang D.L., Peng Q., Cui Z.W., Huang J., Lin Z.Q. (2017): Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma, 295: 69–79. https://doi.org/10.1016/j.geoderma.2017.02.019
 
López-Bellido F.J., Sanchez V., Rivas I., López-Bellido R.J., López-Bellido L. (2019): Wheat grain selenium content as affected by year and tillage system in a rainfed Mediterranean Vertisol. Field Crops Research, 233: 41–48. https://doi.org/10.1016/j.fcr.2019.01.006
 
Luo L.P., Zhang J.P., Zhang K.Y., Wen Q.Y., Ming K., Xiong H., Ning F.J. (2021): Peanut selenium distribution, concentration, speciation, and effects on proteins after exogenous selenium biofortification. Food Chemistry, 354: 129515. https://doi.org/10.1016/j.foodchem.2021.129515
 
Lyons G. (2010): Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant and Soil, 332: 1–4. https://doi.org/10.1007/s11104-010-0282-9
 
Neal R.H., Sposito G. (1991): Selenium mobility in irrigated soil columns as affected by organic carbon amendment. Journal of Environmental Quality, 20: 808–814. https://doi.org/10.2134/jeq1991.00472425002000040016x
 
Øgaard A.F., Sogn T.A., Eich-Greatorex S. (2006): Effect of cattle manure on selenate and selenite retention in soil. Nutrient Cycling in Agroecosystems, 76: 39–48. https://doi.org/10.1007/s10705-006-9039-5
 
Praus L., Száková J. (2019): Role of sulphate in affecting soil availability of exogenous selenate (SeO42–) under different statuses of soil microbial activity. Plant, Soil and Environment, 65: 470–476. https://doi.org/10.17221/397/2019-PSE
 
Praus L., Száková J., Steiner O., Goessler W. (2019): Rapeseed (Brassica napus L.) biofortification with selenium: how do sulphate and phosphate influence the efficiency of selenate application into soil? Archives of Agronomy and Soil Sciences, 65: 2059–2072.
 
Ramkissoon C., Degryse F., da Silva R.C., Baird R., Young S.D., Bailey E.H., McLaughlin M.J. (2019): Improving the efficacy of selenium fertilizers for wheat biofortification. Scientific Reports, 9: 19520. https://doi.org/10.1038/s41598-019-55914-0
 
Schiavon M., Nardi S., Vecchia F.D., Ertani A. (2020): Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant and Soil, 453: 245–270. https://doi.org/10.1007/s11104-020-04635-9
 
Sharma S., Bansal A., Dogra R., Dhillon S.K., Dhillon K.S. (2011): Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in northwestern India. Journal of Plant Nutrition and Soil Science, 174: 269–275. https://doi.org/10.1002/jpln.200900265
 
Shrestha B., Lipe S., Johnson K.A., Zhang T.Q., Retzlaff W., Lin Z.-Q. (2006): Soil hydraulic manipulation and organic amendment for the enhancement of selenium volatilization in a soil-pickleweed system. Plant and Soil, 288: 189–196. https://doi.org/10.1007/s11104-006-9107-2
 
Száková J., Tremlová J., Pegová K., Najmanová J., Tlustoš P. (2015): Soil-to-plant transfer of native selenium for wild vegetation cover at selected locations of the Czech Republic. Environmental Monitoring and Assessment, 187: 358–366. https://doi.org/10.1007/s10661-015-4588-1
 
Tambone F., Scaglia B., D´Imporzano G., Schievano A., Orzi V., Salati S., Adani F. (2010): Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81: 577–583. https://doi.org/10.1016/j.chemosphere.2010.08.034
 
Tan J.A., Zhu W.Y., Wang W.Y., Li R.B., Hou S.F., Wang D.C., Yang L.S. (2002): Selenium in soil and endemic diseases in China. Science of The Total Environment, 284: 227–235. https://doi.org/10.1016/S0048-9697(01)00889-0
 
Tang Y.F., Luo L.M., Carswell A., Misselbrook T., Shen J.H., Han J.G. (2021): Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation. Science of The Total Environment, 757: 143786. https://doi.org/10.1016/j.scitotenv.2020.143786
 
Wadgaonkar S.L., Nancharaiah Y.V., Esposito G., Lens P.N.L. (2018): Environmental impact and bioremediation of seleniferous soils and sediments. Critical Reviews in Biotechnology, 38: 941–956. https://doi.org/10.1080/07388551.2017.1420623
 
Wang Q.Y., Zhang J.B., Zhao B.Z., Xin X.L., Deng X.H., Zhang H.L. (2016): Influence of long-term fertilization on selenium accumulation in soil and uptake by crops. Pedosphere, 26: 120–129. https://doi.org/10.1016/S1002-0160(15)60028-5
 
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti