Effect of exogenous selenium on mineral nutrition and antioxidative capacity in cucumber (Cucumis sativus L.) seedlings under cadmium stress


Sun H.Y., Wang X.Y., Yang N., Zhou H.X., Gao Y.F., Yu J., Wang X.X. (2022): Effect of exogenous selenium on mineral nutrition and antioxidative capacity in cucumber (Cucumis sativus L.) seedlings under cadmium stress. Plant Soil Environ., 68: 580–590.

download PDF

The ameliorative effects and its mitigation mechanisms of selenium (Se) on cadmium (Cd) toxicity in cucumber seedlings were studied through hydroponic experiments. Cd and other mineral nutrient concentrations, antioxidant enzyme activities, and antioxidant contents in cucumber were studied. The results revealed that exogenous Se significantly decreased the Cd concentrations in all tissues, especially in the leaves. Moreover, exogenous Se (Cd + Se) could increase Zn, Na, leaf Cu, stem/root Fe, stem/root Ca, and stem/root Mg concentrations; and reduce leaf Mg concentration, compared with Cd alone treatment. Additionally, the application of Se ameliorated the toxicity of Cd by harmonising the activities of antioxidase, such as Cd + Se treatment reduced Cd-induced increase of superoxide dismutase, glutathione peroxidase, leaf/stem ascorbate peroxidase (APX) activities, which resulted in the significant decrease of the content of hydrogen peroxide, and malondialdialdehyde; increased root APX, and glutathione reductase activities. In addition, the content of nonenzymatic antioxidants such as root-reduced glutathione and oxidised glutathione was significantly increased by adding Se under Cd stress. Also, exogenous Se enhanced the total antioxidant capacity in terms of cupric-reducing antioxidant capacity and decreased total phenols, flavonoids, and leaf/root proline contents under Cd stress. In general, 3 μmol/L Se was conducive to plant growth and improved the cucumber’s ability to alleviate Cd stress.

Ahmed I.M., Nadira U.A., Bibi N., Cao F.B., He X.Y., Zhang G.P., Wu F.B. (2015): Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 111: 1–12. https://doi.org/10.1016/j.envexpbot.2014.10.003
Alyemeni M.N., Ahanger M.A., Wijaya L., Alam P., Bhardwaj R., Ahmad P. (2018): Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma, 255: 459–469. https://doi.org/10.1007/s00709-017-1162-4
Ashraf M., Foolad M.R. (2007): Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205–207. https://doi.org/10.1007/BF00018060
Celik S.E., Özyurek M., Güclü K., Apak R. (2010): Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta, 81: 1300–1309. https://doi.org/10.1016/j.talanta.2010.02.025
Chauhan R., Awasthi S., Srivastava S., Dwivedi S., Pilon-Smits E.A.H., Dhankher O.P., Tripathi R.D. (2019): Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 49: 1937–1958. https://doi.org/10.1080/10643389.2019.1598240
Cui J.H., Jin Q., Li F.B., Chen L. (2022): Silicon reduces the uptake of cadmium in hydroponically grown rice seedlings: why nanoscale silica is more effective than silicate. Environmental Science: Nano, 9: 1961–1973. https://doi.org/10.1039/D1EN00973G
Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., Opdenakker K., Nair A.R., Munters E., Artois T.J., Nawrot T., Vangronsveld J., Smeets K. (2010): Cadmium stress: an oxidative challenge. Biometals, 23: 927–940. https://doi.org/10.1007/s10534-010-9329-x
Das P., Manna I., Biswas A.K., Bandyopadhyay M. (2018): Exogenous silicon alters ascorbate-glutathione cycle in two salt-stressed indica rice cultivars (MTU 1010 and Nonabokra). Environmental Science and Pollution Research, 25: 26625–26642. https://doi.org/10.1007/s11356-018-2659-x
Duman F., Aksoy A., Aydin Z., Temizgul R. (2011): Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water, Air, and Soil Pollution, 217: 545–556. https://doi.org/10.1007/s11270-010-0608-5
Feng R.W., Wang L.Z., Yang J.G., Zhao P.P., Zhu Y.M., Li Y.P., Yu Y.S., Liu H., Rensing C., Wu Z.Y., Ni R.X., Zheng S.A. (2021): Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. Journal of Hazardous Materials, 402: 123570. https://doi.org/10.1016/j.jhazmat.2020.123570
Ge H.L., Zhang F.L. (2019): Growth-promoting ability of Rhodopseudomonas palustris G5 and its effect on induced resistance in cucumber against salt stress. Journal of Plant Growth Regulation, 38: 180–188. https://doi.org/10.1007/s00344-018-9825-8
Gotsis O. (1982): Combined effects of selenium/mercury and selenium/copper on the cell population of the alga Dunaliella minuta. Marine Biology, 71: 217–222. https://doi.org/10.1007/BF00397038
Gratão P.L., Polle A., Lea P.J., Azevedo R.A. (2005): Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32: 481–494. https://doi.org/10.1071/FP05016
Handa N., Kohli S.K., Sharma A., Thukral A.K., Bhardwaj R., Abd_Allah E.F., Alqarawi A.A., Ahmad P. (2019): Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environmental and Experimental Botany, 161: 180–192. https://doi.org/10.1016/j.envexpbot.2018.11.009
Hasanuzzaman M., Hossain M.A., Fujita M. (2011): Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research, 143: 1704–1721. https://doi.org/10.1007/s12011-011-8958-4
Hasanuzzaman M., Fujita M. (2011): Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 143: 1758–1776. https://doi.org/10.1007/s12011-011-8998-9
He X.Y., Richmond M.E.A., Williams D.V., Zheng W.T., Wu F.B. (2019): Exogenous glycinebetaine reduces cadmium uptake and mitigates cadmium toxicity in two tobacco genotypes differing in cadmium tolerance. International Journal of Molecular Sciences, 20: 1612. https://doi.org/10.3390/ijms20071612
Hu J.H., Chen G.L., Xu K., Wang J. (2022): Cadmium in cereal crops: uptake and transport mechanisms and minimizing strategies. Journal of Agricultural and Food Chemistry, 70: 5961–5974. https://doi.org/10.1021/acs.jafc.1c07896
Hussain A., Rizwan M., Ali Q., Ali S. (2019): Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research International, 26: 7579–7588. https://doi.org/10.1007/s11356-019-04210-5
Hussain B., Lin Q., Hamid Y., Sanaullah M., Di L., Hashmi M.L. ur R., Khan M.B., He Z.L., Yang X. (2020): Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Science of The Total Environment, 712: 136497. https://doi.org/10.1016/j.scitotenv.2020.136497
Islam M.M., Hoque Md.A., Okuma E., Banu M.N.A., Shimoishi Y., Nakamura Y., Murata Y. (2009): Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166: 1587–1597. https://doi.org/10.1016/j.jplph.2009.04.002
Ismael M.A., Elyamine A.M., Moussa M.G., Cai M.M., Zhao X.H., Hu C.X. (2019): Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11: 255–277. https://doi.org/10.1039/C8MT00247A
Janicka-Russak M., Kabała K., Burzyński M. (2012): Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. Journal of Experimental Botany, 63: 4133–4142. https://doi.org/10.1093/jxb/ers097
Jia Z.S., Tang M.C., Wu J.M. (1999): The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Jiménez A., Hernández J.A., Pastori G., del Río L.A., Sevilla F. (1998): Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiology, 118: 1327–1335. https://doi.org/10.1104/pp.118.4.1327
Khan N.A., Singh S., Nazar R. (2007): Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 193: 435–444. https://doi.org/10.1111/j.1439-037X.2007.00272.x
Kubier A., Wilkin R.T., Pichler T. (2019): Cadmium in soils and groundwater: a review. Applied Geochemistry, 108: 1–16. https://doi.org/10.1016/j.apgeochem.2019.104388
Kumar A., Singh R.P., Awasthi S., Chakrabarty D., Trivedi P.K., Tripathi R.D. (2014): Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology, 23: 1153–1163. https://doi.org/10.1007/s10646-014-1257-z
Li C.Y., Zhang T.P., Feng P.W., Li D.X., Brestic M., Liu Y., Yang X.H. (2021): Genetic engineering of glycinebetaine synthesis enhances cadmium tolerance in BADH-transgenic tobacco plants via reducing cadmium uptake and alleviating cadmium stress damage. Environmental and Experimental Botany, 191: 104602. https://doi.org/10.1016/j.envexpbot.2021.104602
Lima L.W., Checchio M.V., dos Reis A.R., Alves R. de C., Tezzoto T., Gratão P.L. (2019): Selenium restricts cadmium uptake and improve micronutrients and proline concentration in tomato fruits. Biocatalysis and Agricultural Biotechnology, 18: 101057. https://doi.org/10.1016/j.bcab.2019.101057
Lin L., Zhou W.H., Dai H.X., Cao F.B., Zhang G.P., Wu F.B. (2012): Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials, 235–236: 343–351. https://doi.org/10.1016/j.jhazmat.2012.08.012
Liu W.X., Shang S.H., Feng X., Zhang G.P., Wu F.B. (2015): Modulation of exogenous selenium in cadmium-induced changes in antioxidative metabolism, cadmium uptake, and photosynthetic performance in the 2 tobacco genotypes differing in cadmium tolerance. Environmental Toxicology and Chemistry, 34: 92–99. https://doi.org/10.1002/etc.2760
Mauad M., Crusciol C.A.C., Nascente A.S., Filho H.G., Lima G.P.P. (2016): Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Revista Ciência Agronômica, 47: 532–539. https://doi.org/10.5935/1806-6690.20160064
Nazar R., Iqbal N., Masood A., Khan M.I.R., Syeed S., Khan N.A. (2012): Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American Journal of Plant Sciences, 3: 1476–1489. https://doi.org/10.4236/ajps.2012.310178
Pezzarossa B., Remorini D., Gentile M.L., Massai R. (2012): Effects of foliar and fruit additionof sodium selenate on selenium accumulation and fruit quality. Journal of the Science of Food and Agriculture, 92: 781–786. https://doi.org/10.1002/jsfa.4644
Qureshi M.T., Ahmad M.F., Iqbal N., Waheed H., Hussain S., Brestič M., Anjum A., Noorka I.R. (2021): Agronomic bio-fortification of iron, zinc and selenium enhance growth, quality and uptake of different sorghum accessions. Plant, Soil and Environment, 67: 549–557. https://doi.org/10.17221/137/2021-PSE
Riaz M., Kamran M., Rizwan M., Ali S., Parveen A., Malik Z., Wang X.R. (2021): Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 273: 129690. https://doi.org/10.1016/j.chemosphere.2021.129690
Rizwan M., Ali S., Adrees M., Ibrahim M., Tsang D.C.W., Zia-Ur-Rehman M., Zahir Z.A., Rinklebe J., Tack F.M.G., Ok Y.S. (2017): A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182: 90–105. https://doi.org/10.1016/j.chemosphere.2017.05.013
Saidi I., Chtourou Y., Djebali W. (2014): Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. Journal of Plant Physiology, 171: 85–91. https://doi.org/10.1016/j.jplph.2013.09.024
Sardar R., Ahmed S., Shah A.A., Yasin N.A. (2022): Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Chemosphere, 287: 132332. https://doi.org/10.1016/j.chemosphere.2021.132332
Schützendübel A., Nikolova P., Rudolf C., Polle A. (2002): Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiology and Biochemistry, 40: 577–584. https://doi.org/10.1016/S0981-9428(02)01411-0
Seppänen M., Turakainen M., Hartikainen H. (2003): Selenium effects on oxidative stress in potato. Plant Science, 165: 311–319. https://doi.org/10.1016/S0168-9452(03)00085-2
Sergiev I., Alexieva V., Karanov E. (1997): Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus De L Academie Bulgare Des Sciences, 51: 121–124.
Shah A.A., Ahmed S., Yasin N.A. (2020): Cadmium stress consolation in melatonin supplemented Cucumis sativus through modulation of antioxidative defense system. Iranian Journal of Plant Physiology, 10: 3135–3154.
Shah A.A., Ahmed S., Yasin N.A. (2019): 24-epibrassinolide triggers cadmium stress mitigation in Cucumis sativus through intonation of antioxidant system. South African Journal of Botany, 127: 349–360. https://doi.org/10.1016/j.sajb.2019.11.003
Shah A.A., Yasin N.A., Mudassir M., Ramzan M., Hussain I., Siddiqui M.H., Ali H.M., Shabbir Z., Ali A., Ahmed S., Kumar R. (2022): Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. Environmental Pollution, 307: 119413. https://doi.org/10.1016/j.envpol.2022.119413
Shahid M., Dumat C., Khalid S., Niazi N.K., Antunes P.M.C. (2017): Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology, 241: 73–137.
Street R.A., Kulkarni M.G., Stirk W.A., Southway C., Van Staden J. (2010): Effect of cadmium on growth and micronutrient distribution in wild garlic (Tulbaghia violacea). South African Journal of Botany, 76: 332–336. https://doi.org/10.1016/j.sajb.2009.12.006
Sun H.Y., Wang X.Y., Dai H.X., Zhang G.P., Wu F.B. (2013): Effect of exogenous glutathione and selenium on cadmium-induced changes in cadmium and mineral concentrations and antioxidative metabolism in maize seedlings. Asian Journal of Chemistry, 25: 2970–2976. https://doi.org/10.14233/ajchem.2013.13460
Sun H.Y., Dai H.X., Wang X.Y., Wang G.H. (2016a): Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.). Ecotoxicology and Environmental Safety, 133: 114–126. https://doi.org/10.1016/j.ecoenv.2016.07.003
Sun H.Y., Wang X.Y., Wang Y.N., Wei Y.Y., Wang G. (2016b): Alleviation of cadmium toxicity in cucumber (Cucumis sativus) seedlings by the application of selenium. Spanish Journal of Agricultural Research, 14: e1105. https://doi.org/10.5424/sjar/2016144-10008
Terpinc P., Čeh B., Ulrih N.P., Abramovič H. (2012): Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39: 210–217. https://doi.org/10.1016/j.indcrop.2012.02.023
Wang C., Lu J., Zhang S.H., Wang P.F., Hou J., Qian J. (2011): Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicological and Environmental Safety, 74: 1297–1303. https://doi.org/10.1016/j.ecoenv.2011.03.005
Wang C.R., Rong H., Zhang X.B., Shi W.J., Hong X., Liu W.C., Cao T., Yu X.X., Yu Q.F. (2020): Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead. Chemosphere, 251: 126347. https://doi.org/10.1016/j.chemosphere.2020.126347
Wang K., Linghu J.Y., Kong L.X., Huang S.Y., Wang Q., Li H.F., Wan Y.N. (2021): Comparative responses of cadmium accumulation and subcellular distribution in wheat and rice supplied with selenite or selenate. Environmental Science and Pollution Research International, 28: 45075–45086. https://doi.org/10.1007/s11356-021-13554-w
Wójcik M., Tukiendorf A. (2011): Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biologia Plantarum, 55: 125–132. https://doi.org/10.1007/s10535-011-0017-7
Wu F.B., Zhang G.P., Dominy P. (2003): Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50: 67–78. https://doi.org/10.1016/S0098-8472(02)00113-2
Wu Z.C., Xu S.J., Shi H.Z., Zhao P.H., Liu X.X., Li F.R., Deng T.H., Du R.Y., Wang X., Wang F.H. (2018): Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage. Ecotoxicological and Environmental Safety, 166: 157–164. https://doi.org/10.1016/j.ecoenv.2018.09.085
Xu J., Wang W.Y., Yin H.X., Liu X.J., Sun H., Mi Q. (2010): Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant and Soil, 326: 321. https://doi.org/10.1007/s11104-009-0011-4
Xu S.N., Zhao N., Qin D.N., Liu S.H., Jiang S.M., Xu L.Y., Sun Z., Yan D.Z., Hu A.Y. (2021): The synergistic effects of silicon and selenium on enhancing salt tolerance of maize plants. Environmental and Experimental Botany, 187: 104482. https://doi.org/10.1016/j.envexpbot.2021.104482
Yadav S.K. (2010): Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76: 167–179. https://doi.org/10.1016/j.sajb.2009.10.007
Zembala M., Filek M., Walas S., Mrowiec H., Kornaś A., Miszalski Z., Hartikainen H. (2010): Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil, 329: 457–468. https://doi.org/10.1007/s11104-009-0171-2
Zhang Z., Di W. (2003): Laboratory Guide for Plant Physiology. Beijing, Higher Education Press.
Zhang M., Tang S.H., Huang X., Zhang F.B., Pang Y.W., Huang Q.Y., Yi Q. (2014): Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany, 107: 39–45. https://doi.org/10.1016/j.envexpbot.2014.05.005
Zhang Z.W., Dong Y.Y., Feng L.Y., Deng Z.L., Xu Q., Tao Q., Wang C.Q., Chen Y.E., Yuan M., Yuan S. (2020): Selenium enhances cadmium accumulation capability in two mustard family species-Brassica napus and B. juncea. Plants, 9: 904. https://doi.org/10.3390/plants9070904
Zhang T.P., Zhang W.X., Li D.X., Zhou F.L., Chen X., Li C.Y., Yu S., Brestic M., Liu Y., Yang X.H. (2021): Glycinebetaine: a versatile protectant to improve rice performance against aluminium stress by regulating aluminium uptake and translocation. Plant Cell Reports, 40: 2397–2407. https://doi.org/10.1007/s00299-021-02780-8
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti