The effect of natural and biological pesticides on the degradation of synthetic pesticides

https://doi.org/10.17221/152/2021-PPSCitation:

Citation: Książek-Trela P., Szpyrka E. (2022): The effect of natural and biological pesticides on the degradation of synthetic pesticides. Plant Protect. Sci., 58: 273-291.

download PDF

Chemical plant protection methods have been used for decades. For some time now, society has paid attention to the hazards to human health resulting from the excessive use of chemical protection products. The presence of plant protection agent residues in crops causes changes in the natural environment, including biodiversity loss and the appearance of organisms harmful to plants, resistant to plant protection agents. To protect the health of humans, animals, and the environment, the principles of integrated plant protection have been introduced, giving priority to biological plant protection methods, for example, the use of biological active substances containing microorganisms (bacteria, yeasts, fungi) and natural substances. Microorganisms, as well as other natural substances, can accelerate the degradation of chemical plant protection products present in the environment and agricultural products. This review paper focuses on the effect of natural and biological pesticides on the degradation of synthetic pesticides. The most important and most perspective in integrated pest management (IPM) systems are Bacillus spp. and Trichoderma spp. because their effectiveness in pesticide degradation and the large number of commercial preparations containing these microorganisms available on the market. The application of biological pesticides recommended in IPM systems could significantly improve the quality of the soil, environment, and human health.

References:
Abd El-Ghany T.M., Masmali I.A. (2016): Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. Journal of Plant Pathology & Microbiology, 7: 5. doi: 10.4172/2157-7471.1000349
 
Abo-Amer A.E. (2012): Characterization of a strain of Pseudomonas putida isolated from agricultural soil that degrades cadusafos (an organophosphorus pesticide). World Journal of Microbiology and Biotechnology, 28: 805–814. https://doi.org/10.1007/s11274-011-0873-5
 
Acharya K.P., Shilpkar P., Shah M.C., Chellapandi P. (2015): Biodegradation of insecticide monocrotophos by Bacillus subtilis KPA-1, isolated from agriculture soils. Applied Biochemistry and Biotechnology, 175: 1789–1804. https://doi.org/10.1007/s12010-014-1401-5
 
Afify A.E.M.R., Shousha M.A. (1988): Effect of low-dose irradiation on soybean protein solubility, trypsin inhibitor activity, and protein patterns separated by polyacrylamide gel electrophoresis. Journal of Agricultural and Food Chemistry, 36: 810–813. https://doi.org/10.1021/jf00082a035
 
Afify A.E.M.R., Ibrahim G.M., Abo El Seoud M.A., Helal I.M.M., Kassem B.W. (2012): Exposing of Trichoderma spp. to gamma radiation for simulating its pesticide biodegradation activity. Journal of Radiation Research and Applied Siences, 5: 440–454.
 
Afify A., Abo-El-Seoud M.A., Ibrahim G.M., Kassem B. (2013): Simulating of biodegradation of Oxamyl pesticide by low dose gamma irradiated fungi. Journal of Plant Pathology & Microbiology, 4: 27. doi: 10.4172/2157-7471.1000201
 
Aislabie J., Lloyd-Jones G. (1995): A review of bacterial degradation of pesticides. Australian Journal of Soil Research, 33: 925–942. https://doi.org/10.1071/SR9950925
 
Alvarez A., Saez J.M., Davila J.S., Colin V.L., Fuentes M.S., Cuozzo S.A., Amoroso M.J. (2017): Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166: 41–62. https://doi.org/10.1016/j.chemosphere.2016.09.070
 
Anwar S., Liaquat F., Khan Q.M., Khalid Z.M., Iqbal S. (2009): Biodegradation of chlorpyrifos and its hdrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. Journal of Hazardous Materials, 168: 400–405. https://doi.org/10.1016/j.jhazmat.2009.02.059
 
Arunachalam C., Velmurugan A.M. (2010): Assessment and optimization of pesticide degradation by Pseudomonas putida. Environmental Sciences Europe, 5: 38–41.
 
Askar A.I., Ibrahim G.H., Osman K.A. (2007): Biodegradation kinetics of Bromoxynil as a pollution control technology. Egyptian Journal of Aquatic Research, 33: 111–121.
 
Baczyński T., Kryłów M., Malachowska-Jutsz A., Stobiecki T. (2008): Efektywność różnych dodatkow w bioremediacji gruntu skażonego chloroorganicznymi środkami ochrony roślin. Biotechnologia, 2: 162–173. Polish.
 
Bass C., Field L. (2011): Gene amplification and insecticide resistance. Pest Management Science, 67: 886–890. https://doi.org/10.1002/ps.2189
 
Benimeli C.S., Amoroso M.J., Chaile A.P., Castro G.R. (2003): Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresource Technologys, 89: 133–138. https://doi.org/10.1016/S0960-8524(03)00061-0
 
Benimeli C.S., Castro G.R., Chaile A.P., Amoroso M.J. (2006): Lindane removal induction by Streptomyces sp. M7. Journal of Basic Microbiology, 46: 348–357. https://doi.org/10.1002/jobm.200510131
 
Blanchet P.F., St-George A. (1982): Kinetics of chemical degradation of organophosphorus pesticides; hydrolysis of chlorpyrifos and chlorpyrifos-methyl in the presence of copper(II). Pesticide Science, 13: 85–91.  https://doi.org/10.1002/ps.2780130113
 
Bourguignon N., Fuentes M.S., Benimeli C.S., Cuozzo S.A., Amoroso M.J. (2014): Aerobic removal of methoxychlor by a native Streptomyces strain: Identification of intermediate metabolites. International Biodeterioration and Biodegradation, 96: 80–86. https://doi.org/10.1016/j.ibiod.2014.09.016
 
BPDB (2022): Bio-Pesticides DataBase. Hatfield, University of Hertfordshire. Available at http://sitem.herts.ac.uk/aeru/bpdb/index.htm (accessed Feb 2, 2022).
 
Briceno G., Fuentes M.S., Palma G., Jorquera M.A., Amoroso M.J., Diez M.C. (2012): Chloropyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. International Biodeterioration and Biodegradation, 73: 1–7. https://doi.org/10.1016/j.ibiod.2012.06.002
 
Briceno G., Pizzul L., Diez M.C. (2013): Biodegradation of pesticide by Actinobacteria and their possible application in biobed system. In: Amoroso M.J., Benimeli C.S., Cuozzo S.A. (eds). Actinobacteria: Application in Bioremediation and Production of Industrial Enzymes. Boca Raton, CRC Press: 165–191.
 
Briceno G., Schalchli H., Rubilar G.R., Tortella G.R., Mutis A., Benimeli C.S., Palma G., Diez M.C. (2016): Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture. Chemosphere, 156: 195–203. https://doi.org/10.1016/j.chemosphere.2016.04.118
 
Castillo M.A., Felis N., Aragon P., Cuesta G., Sabater C. (2006): Biodegradation of the herbicide diuron by Streptomyces isolated from soil. International Biodeterioration and Biodegradation, 58: 196–202. https://doi.org/10.1016/j.ibiod.2006.06.020
 
Castoria R., De Curtis F., Lima G., Caputo L., Pacifico S., De Cicco V. (2001): Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: Study on its modes of action. Postharvest Biology and Technology, 22: 7–17. https://doi.org/10.1016/S0925-5214(00)00186-1
 
Ciesielska J., Malusa E., Sas Paszt L. (2011): Środki ochrony roślin stosowane w rolnictwie ekologicznym. Opis wg Zał. II Rozporządzenia Komisji (WE) nr 889/2008 ustanawiające szczegółowe zasady wdrażania rozporządzenia Rady (WE) nr 834/2007 w sprawie produkcji ekologicznej i znakowania produktów ekologicznych w odniesieniu do produkcji ekologicznej, znakowania i kontroli. Skierniewice: 1–81. Polish.
 
Cuozzo S.A., Fuentes M.S., Bourguignon N., Benimeli C.S., Amoroso M.J. (2012): Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. International Biodeterioration and Biodegradation, 66: 19–24. https://doi.org/10.1016/j.ibiod.2011.09.011
 
Damalas C.A., Koutroubas S.D. (2018): Current status and recent developments in biopesticide use. Agriculture, 8: 13. doi: 10.3390/agriculture8010013 https://doi.org/10.3390/agriculture8010013
 
Diez M.C. (2010): Biological aspects involved in the degradation of organic pollutants. Journal of Soil Science and Plant Nutrition, 10: 244–267. https://doi.org/10.4067/S0718-95162010000100004
 
Dominik A., Schonthaler J. (2012): Integrowana ochrona roślin w gospodarstwie. Poradnik praktyczny – Zasady ogólne. Radom, Centrum Doradztwa Rolniczego w Brwinowie Oddział w Radomiu. Polish.
 
Doolotkeldieva T., Konurbaeva M., Bobusheva S. (2018): Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environmental Science and Pollution Research, 25: 31848–31862.  https://doi.org/10.1007/s11356-017-0048-5
 
Đorđević T.M., Đurović-Pejčev R.D. (2016): The potency of Saccharomyces cerevisiae and Lactobacillus plantarum to dissipate organophosphorus pesticides in wheat during fermentation. Journal of Food Science and Technology, 53: 4205–4215.  https://doi.org/10.1007/s13197-016-2408-4
 
Ellegaard-Jensen L. (2012): Fungal degradation of pesticides: Construction of microbial consortia for bioremediation [PhD thesis]. Copenhagen, University of Copenhagen.
 
Ene M., Alexandru M. (2008): Microscopial examination of plant reaction in case of infection with Trichoderma and Mycorrhizal fungi. Roumanian Biotechnological Letters, 13: 13–19.
 
Essa A.M., Reyad A.M., Redwan T.E., Ibrahim W.M. (2016): Biodegradation of the organophosphorus insecticide diazinon by Pseudomonas aeruginosa isolated from agricultural drainage ditches. Egyptian Journal of Botany, 56: 353–370. https://doi.org/10.21608/ejbo.2016.393
 
Council Directive (2009): Directive 2009/128/EC of the European Parlament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Official Journal of the European Union, L309.
 
Comission Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union, L309.
 
Evans C.S., Hedger J.N. (2001): Degradation of plant cell wall polymers. In: Gadd G.M. (ed.). Fungi in Bioremediation. Cambridge, Cambridge University Press: 1–10.
 
Feng Y., Minard R., Bollag J. (1998): Photolytic and microbial degradation of 3,5,6-trichloro-2-pyridinol. Environmental Toxicology and Chemistry, 17: 814–819. https://doi.org/10.1002/etc.5620170508
 
Frąc M. (2019): Znaczenie bioróżnorodności w zakresie rolnictwa precyzyjnego. Instytut Agrofizyki PAN: 1–42. Polish.
 
Gacek E. (2016): Metoda hodowlana i zarządzanie odpornością roślin na choroby. In: Gacek E., Głazek M., Matyjaszczyk E., Pruszyński G., Pruszyński S., Stobiecki S. (eds). Metody ochrony w integrowanej ochronie roślin. Poznan, Centrum Doradztwa Rolniczego w Brwinowie: 80–107.
 
Gangireddygari V.S.R., Kanderi D.K., Golla R., Bangeppagari M., Gundi V.A.K.B., Ntushelo K., Bontha R.R. (2017a): Biodegradation of quinalphos by a soil bacterium – Bacillus subtilis. Pakistan Journal of Biological Sciences, 20: 410–422.  https://doi.org/10.3923/pjbs.2017.410.422
 
Gangireddygari V.S.R., Kalva P.K., Ntushelo K., Bangeppagari M., Djami Tchatchou A., Bontha R.R. (2017b): Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environmental Sciences Europe, 29: 1–10.  https://doi.org/10.1186/s12302-017-0109-x
 
Gangola S., Sharma A., Bhatt P., Khati P., Chaudhary P. (2018): Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Scientific Reports, 8: 12755. doi: 10.1038/s41598-018-31082-5 https://doi.org/10.1038/s41598-018-31082-5
 
Gilani R.A., Rafique M., Rehman A., Munis M.F.H., Rehman S., Chaudhary H.J. (2016): Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. Journal of Basic Microbiology, 56: 105–109.  https://doi.org/10.1002/jobm.201500336
 
Hack M., Nitz S., Parlar H. (1997): Behavior of [14C]atrazine, [14C]terbutylazine, and their major metabolites in the brewing process. Journal of Agricultural and Food Chemistry, 45: 1375–1380.  https://doi.org/10.1021/jf9605411
 
Harish R., Supreeth M., Chauhan J.B. (2013): Biodegradation of organophosphate pesticide by soil fungi. Advanced BioTech, 12: 4–8.
 
Huang Y., Xiao L., Li F., Xiao M., Lin D., Long X., Wu Z. (2018): Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. Molecules, 23: 2313. doi: 10.3390/molecules23092313 https://doi.org/10.3390/molecules23092313
 
Jayabarath J., Musfira S.A., Giridhar R., Shyam sundar S., Arulmurugan R. (2010): Biodegradation of carbofuran pesticide by saline soil actinomycetes. International Journal of Biochemistry and Biotechnology, 6: 187–192.
 
Jayaraman P., Naveen Kumar T., Maheswaran P., Sagadeva E., Arumugam P. (2012): In vitro studies on biodegradation of chlorpyrifos by Trichoderma viride and T. harzianum. Journal of Pure and Applied Microbiology, 6: 1465–1474.
 
Jensen D.F., Karlsson M., Sarrocco S., Vannacci G. (2016): Biological control using microorganisms as an alternative to disease resistance. Plant Protection Resistance Biotechnology. Chapter 18. Available at https://doi.org/10.1002/9781118867716.ch18
 
Jesitha K., Nimisha K.M., Manjush C.M., Harikuma P.S. (2015): Biodegradation of Endosulfan by Pseudomonas fluorescens. Environmental Processes, 2: 225–240.  https://doi.org/10.1007/s40710-015-0059-5
 
Kamal Z.M., Fetyan N., Ibrahim M.A., Sherif E.N. (2008): Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Australian Journal of Basic and Applied Sciences, 2: 724–732.
 
Kariga S.C., Rao S.S. (2011): Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011: 805187. doi: 10.4061/2011/805187 https://doi.org/10.4061/2011/805187
 
Katayama A., Matsumura F. (1993): Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environmental Toxicology and Chemistry, 12: 1059–1065.  https://doi.org/10.1002/etc.5620120612
 
Kempka J. (2014): Biologiczna ochrona roślin przed chorobami jako element integrowanej ochrony roślin. Kraków, Centrum Doradztwa Rolniczego w Brwinowie. Oddział w Krakowie. Polish.
 
Khan S., Zaffar H., Irshad U., Ahmad R., Khan A.R., Shah M.M., Bilal M., Iqbal M., Naqvi T. (2016): Biodegradation of malathion by Bacillus licheniformis strain ML-1. Archives of Biological Sciences, 68: 51–59. https://doi.org/10.2298/ABS141218007K
 
Kitagawa E., Takahashi J., Momose Y., Iwahashi H. (2002): Effects of the pesticide thiuram: Genome-wide screening of indicator genes by yeast DNA microarray. Environmental Science and Technology, 36: 3908–3915.  https://doi.org/10.1021/es015705v
 
Korniłowicz-Kowalska T. (2000): Oddziaływanie grzybów glebowych (Micromycetes) na patogeny oraz szkodniki roślin i jeo praktyczny aspekt. Fragmenta Agronomica, 2: 135–149. Polish with English abstract.
 
Lee Y.S., Lee J.H., Hwang E.J., Lee H.J., Kim J.H., Heo J.B., Choi Y.L. (2016): Characterization of biological degradation cypermethrin by Bacillus amyloliquefaciens AP01. Journal of Applied Biological Chemistry, 59: 9–12. https://doi.org/10.3839/jabc.2016.003
 
Li X., He J., Li S. (2007): Isolation of a chlorpyrifos, degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Research in Microbiology, 158: 143–149. https://doi.org/10.1016/j.resmic.2006.11.007
 
Li Y., Chi M.M., Ge X.Z. (2019): Identification of a novel hydrolase encoded by hy-1 from Bacillus amyloliquefaciens for bioremediation of carbendazim contaminated soil and food. International Journal of Agricultural and Biological Engineering, 12: 218–224.  https://doi.org/10.25165/j.ijabe.20191202.4190
 
Liu T., Sun C., Ta N., Hong J., Yang S., Chen C. (2007): Effect of copper on the degradation of pesticides cypermethrin and cyhalothrin. Journal of Environmental Sciences, 19: 1235–1238.  https://doi.org/10.1016/S1001-0742(07)60201-0
 
Lin Q.S., Chen S.H., Hu M.Y., Haq M.R., Yang L., Li H. (2011): Biodegradation of cypermethrin by a newly isolated Actinomycetes HU-S-01 from wastewater sludge. International Journal of Environmental Science and Technology, 8: 45–56. https://doi.org/10.1007/BF03326194
 
Low F.L., Shaw I.C., Gerrard J.A. (2005): The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening, 40: 133–137.  https://doi.org/10.1111/j.1472-765X.2004.01633.x
 
Maloney S.E. (2001): Pesticide degradation. In: Gadd G.M. (ed.). Fungi in Bioremediation. Cambridge, Cambridge University Press: 188–223.
 
Mandal K., Singh B., Jariyal M., Gupta V.K. (2013): Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicology and Environmental Safety, 93: 87–92.  https://doi.org/10.1016/j.ecoenv.2013.04.001
 
Mandal K., Singh B., Jariyal M., Gupta V.K. (2014): Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere, 101: 55–60. https://doi.org/10.1016/j.chemosphere.2013.11.043
 
Matyjaszczyk E. (2015): Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. Pest Management Science, 71: 1201–1206. https://doi.org/10.1002/ps.3986
 
Mendoza J.C., Perea Y., Salvador J.A. (2011): Bacterial biodegradation of permetrina and cypermetrina pesticides in a culture assemblage. Avances En Ciencias e Ingenieria, 2: 45–55.
 
Meng D., Zhang L., Meng J., Tian Q., Zhai L., Hao Z., Guan Z., Cai Y., Liao X. (2019a): Evaluation of the strain Bacillus amyloliquefaciens YP6 in phoxim degradation via transcriptomic data and product analysis. Molecules, 24: 3997. doi: 10.3390/molecules24213997 https://doi.org/10.3390/molecules24213997
 
Meng D., Jiang W., Li J., Huang L., Zhai L., Zhang L., Guan Z., Cai Y., Liao X. (2019b): An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. Journal of Environmental Science and Health – Part B Pesticides, Food Contaminants, and Agricultural Wastes, 54: 336–343.  https://doi.org/10.1080/03601234.2019.1571363
 
Ministry of Agriculture and Rural Development (2022): Integrated Plant Protection. Available at https://www.gov.pl/web/rolnictwo/integrowana-ochrona-roslin (accessed Feb 2, 2022). Polish.
 
Mochi D.A., Monteiro A.C., Barbosa J.C. (2005): Biological control. Action of pesticides to Metarhizium anisopliae in soil. Neotropical Entomology, 34: 961–971. https://doi.org/10.1590/S1519-566X2005000600013
 
Mollea C., Bosco F., Ruggeri B. (2005): Fungal biodegradation of naphthalene: Microcosms studies. Chemosphere, 60: 636–643. https://doi.org/10.1016/j.chemosphere.2005.01.034
 
Myresiotis C.K., Vryzas Z., Papadopoulou-Mourkidou E. (2012): Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation, 23: 297–310.  https://doi.org/10.1007/s10532-011-9509-6
 
Narayanan M., Kumarasamy S., Ranganthan M., Kandasamy S., Kandasamy G., Gnanavel K. (2020): Enzyme and metabolites attained in degradation of chemical pesticides β Cypermethrin by Bacillus cereus. Materials Today: Proceedings, 33: 3640–3645.
 
Novotny C., Svobodova K., Erbanova P., Cajthaml T., Kasinath A., Lang E. (2004): Lignionolytic fungi in bioremediation extracellular enzyme production and degradation rate. Soil Biology & Biochemistry, 36: 1545–1551.
 
Oliveira B.R., Penetra A., Cardoso V.V., Benoliel M.J., Barreto Crespo M.T., Samson R.A., Pereira V.J. (2015): Biodegradation of pesticides using fungi species found in the aquatic environment. Environmental Science and Pollution Research, 22: 11781–11791.  https://doi.org/10.1007/s11356-015-4472-0
 
Ong S.Q., Ahmad H., Ab Majid A.H., Jaal Z. (2019): Conservation of agricultural soil using entomopathogenic fungi: An agent with insecticides degradation potential. IOP Conference Series: Earth and Environmental Science, 380: 012014. doi: 10.1088/1755-1315/380/1/012014 https://doi.org/10.1088/1755-1315/380/1/012014
 
Ortiz-Hernandez M.L., Sanchez-Salinas E., Dantan-Gonzalez E., Castrejon-Godinez M.L. (2013): Pesticide biodegradation: Mechanisms, genetics and strategies to enhance the process. In: Chamy R., Rosenkranz F. (eds). Biodegradation – Life of Science. Rijeka, InTech. Available at https://doi.org/10.5772/56098
 
Paszczyński A., Crawford R. (2000): Recent advances in the use of fungi in environmental remediation and biotechnology. Soil Biochemistry, 10: 379–422.
 
Pawar K.R., Mali G.V. (2014): Biodegradation of Quinolphos insecticide by Pseudomonas strain isolated from Grape rhizosphere soils. International Journal of Current Microbiology and Applied Sciences, 3: 606–613.
 
Podbielska M., Szpyrka E., Piechowicz B., Sadło S., Sudoł M. (2018): Assessment of boscalid and pyraclostrobin disappearance and behavior following application of effective microorganisms on apples. Journal of Environmental Science and Health – Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53: 652–660.  https://doi.org/10.1080/03601234.2018.1474554
 
Podbielska M., Kus-Li Skiewicz M., Jagusztyn B., Piechowicz B., Sadło S., Słowik-Borowiec M., Twaruzek M., Szpyrka E. (2020): Influence of Bacillus subtilis and Trichoderma harzianum on penthiopyrad degradation under laboratory and field studies. Molecules, 25: 1421. doi: 10.3390/molecules25061421 https://doi.org/10.3390/molecules25061421
 
Prabha R., Singh D.P., Verma M.K. (2017): Microbial interactions and perspectives for bioremediation of pesticides in the soils. In: Singh D.P., Singh H.B., Prabha R. (eds). Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore, Springer: 649–671.
 
Rafiq N., Tariqa S.R., Zaidia F. (2012): Photocatalytic degradation studies of imidacloprid and lambda-cyhalothrin by copper metal. International Journal of Environmental Pollution Control and Management, 4: 139–145.
 
Rajendran P., Gunasekaran P. (2006): Microbial Bioremediation. Chennai, MJP Publishers.
 
Różański L. (1992): Przeminy Pestycydów w Organizmach Żywych i Środowisku. Warszawa, Państwowe Wydawnictwo Rolnicze i Leśne.
 
Saafan A.E., Azmy A.F., Amin M.A., Ahmed S.H., Essam T.M. (2016): Isolation and characterization of two malathion-degrading Pseudomonas sp. in Egypt. African Journal of Biotechnology, 15: 1661–1672. https://doi.org/10.5897/AJB2016.15273
 
Salunkhe V.P., Sawant I.S., Banerjee K., Rajguru Y.R., Wadkar P.N., Oulkar D.P., Naik D.G., Sawant S.D. (2013): Biodegradation of profenofos by Bacillus subtilis isolated from grapevines (Vitis vinifera). Journal of Agricultural and Food Chemistry, 61: 7195–7202.  https://doi.org/10.1021/jf400528d
 
Sambasiva Rao K.R., Tripathy N.K., Mahalaxmi Y., Prakasham R.S. (2012): Laccase- and peroxidase-free tyrosinase production by isolated microbial strain. Journal of Microbiology and Biotechnology, 22: 207–214. https://doi.org/10.4014/jmb.1106.06031
 
Schena L., Nigro F., Pentimone I., Ligorio A., Ippolito A. (2003): Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology, 30: 209–220. https://doi.org/10.1016/S0925-5214(03)00111-X
 
Sette L.D., Mnedonca Alves da Costa L.A., Marsaioli A.J., Manfio G.P. (2004): Biodegradation of alachlor by soil Streptomyces. Applied Microbiology and Biotechnology, 64: 712–717. https://doi.org/10.1007/s00253-003-1494-1
 
Sette L.D., De Oliveira V.M., Manfio G.P. (2005): Isolation and characterization of alachlor-degrading Actinomycetes from soil. Antonie van Leeuwenhoek, 87: 81–89. https://doi.org/10.1007/s10482-004-1129-2
 
Sharma P., Sharma M., Raja M., Singh D.V., Srivastava M. (2016): Use of Trichoderma spp. in biodegradation of Carbendazim. Indian Journal of Agricultural Sciences, 86: 891–894.
 
Shivaramaiah H.M., Kennedy I.R. (2006): Biodegradation of endosulfan by a soil bacterium. Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41: 895–905. https://doi.org/10.1080/03601230600806004
 
Spinelli V., Ceci A., Dal Bosco C., Gentili A., Persiani A.M. (2021): Glyphosate-eating fungi: Study on fungal saprotrophic strains’ ability to tolerance and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it. Microorganisms, 9: 2179. doi: 10.3390/microorganisms9112179 https://doi.org/10.3390/microorganisms9112179
 
Sun J., Yuan X., Li Y., Wang X., Chen J. (2001): The biochemical properties of a novel paraoxonase-like enzyme in Trichoderma atroviride strain T23 involved in the degradation of 2,2-dichlorovinyl dimethyl phosphate. Applied Microbiology and Biotechnology, 103: 8947–8962.  https://doi.org/10.1007/s00253-019-10136-2
 
Suryawanshi K.T., Sawant I.S., Sawant S.D., Shabeer T.P.A., Saha S., Pudale A., Dantre R.K. (2018): Field evaluation of the bio-efficacy of Bacillus subtilis DR-39 formulation for enhancing pesticide degradation in grapes and optimisation of application dose. Indian Phytopathology, 71: 571–577. https://doi.org/10.1007/s42360-018-0074-3
 
Swetha V.P., Phale P.S. (2005): Metabolism of carbaryl via 1,2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5 and C6. Journal of Applied Microbiology, 71: 5951–5956. https://doi.org/10.1128/AEM.71.10.5951-5956.2005
 
Szpyrka E., Podbielska M., Zwolak A., Piechowicz B., Siebielec G., Słowik-Borowiec M. (2020): Influence of a commercial biological fungicide containing Trichoderma harzianum Rifai T-22 on dissipation kinetics and degradation of five herbicides in two types of soil. Molecules, 25: 1391. doi: 10.3390/molecules25061391 https://doi.org/10.3390/molecules25061391
 
Tang J., Liu L., Hu S., Chen Y., Chen J. (2009): Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). Bioresource Technology, 100: 480–483.  https://doi.org/10.1016/j.biortech.2008.05.022
 
Vacondio B., Birolli W.G., Ferreira I.M., Seleghim M.H.R., Gonçalves S., Vasconcellos S.P., Porto A.L.M. (2015): Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatalysis and Agricultural Biotechnology, 4: 266–275.  https://doi.org/10.1016/j.bcab.2015.03.005
 
Vero S., Garmendia G., Gonzalez M.B., Garat F.M., Wisniewski M. (2009): Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biocontrol Science and Technology, 19: 1033–1049. https://doi.org/10.1080/09583150903277738
 
Wang Y.P., Shi J.Y., Wang H., Lin Q., Chen X.C., Chen Y.X. (2007): The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety, 67: 75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007
 
Wołejko E., Łozowicka B., Kaczyński P., Jankowska M., Piekut J. (2016): The influence of effective microorganisms (EM) and yeast on the degradation of strobilurins and carboxamides in leafy vegetables monitored by LC-MS/MS and health risk assessment. Environmental Monitoring and Assessment, 188: 64. doi: 10.1007/s10661-015-5022-4 https://doi.org/10.1007/s10661-015-5022-4
 
Wolny S. (2003): Integrowana ochrona roślin, czyli jak skutecznie, bezpiecznie i ekonomicznie radzić sobie ze sprawcami chorób, szkodnikami i chwastami. Warszawa, Ministerstwo Rolnictwa i Rozwoju Wsi. Polish.
 
Wróblewska-Krepsztul J., Michalska-Pożoga I., Szczypiński M., Szczypiński M., Rydzkowski T. (2017): Biodegradacja: Atrakcyjna alternatywa dla obecnych technik utylizacji odpadów tworzyw polimerowych. Przetwórstwo Tworzyw, 23: 579–584. Polish with English abstract.
 
You G., Sayles G.D., Kupferle M.J., Kim I.S., Bishop P.L. (1996): Anaerobic DDT biotransformation: Enhancement by application of substants and low oxidation reduction potentail. Chemistry, 32: 2269–2284.
 
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti