The effect of natural and biological pesticides on the degradation of synthetic pesticides
Abd El-Ghany T.M., Masmali I.A. (2016): Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. Journal of Plant Pathology & Microbiology, 7: 5. doi: 10.4172/2157-7471.1000349
Abo-Amer A.E. (2012): Characterization of a strain of Pseudomonas putida isolated from agricultural soil that degrades cadusafos (an organophosphorus pesticide). World Journal of Microbiology and Biotechnology, 28: 805–814.
https://doi.org/10.1007/s11274-011-0873-5
Acharya K.P., Shilpkar P., Shah M.C., Chellapandi P. (2015): Biodegradation of insecticide monocrotophos by Bacillus subtilis KPA-1, isolated from agriculture soils. Applied Biochemistry and Biotechnology, 175: 1789–1804.
https://doi.org/10.1007/s12010-014-1401-5
Afify A.E.M.R., Shousha M.A. (1988): Effect of low-dose irradiation on soybean protein solubility, trypsin inhibitor activity, and protein patterns separated by polyacrylamide gel electrophoresis. Journal of Agricultural and Food Chemistry, 36: 810–813.
https://doi.org/10.1021/jf00082a035
Afify A.E.M.R., Ibrahim G.M., Abo El Seoud M.A., Helal I.M.M., Kassem B.W. (2012): Exposing of Trichoderma spp. to gamma radiation for simulating its pesticide biodegradation activity. Journal of Radiation Research and Applied Siences, 5: 440–454.
Afify A., Abo-El-Seoud M.A., Ibrahim G.M., Kassem B. (2013): Simulating of biodegradation of Oxamyl pesticide by low dose gamma irradiated fungi. Journal of Plant Pathology & Microbiology, 4: 27. doi: 10.4172/2157-7471.1000201
Aislabie J., Lloyd-Jones G. (1995): A review of bacterial degradation of pesticides. Australian Journal of Soil Research, 33: 925–942.
https://doi.org/10.1071/SR9950925
Alvarez A., Saez J.M., Davila J.S., Colin V.L., Fuentes M.S., Cuozzo S.A., Amoroso M.J. (2017): Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166: 41–62.
https://doi.org/10.1016/j.chemosphere.2016.09.070
Anwar S., Liaquat F., Khan Q.M., Khalid Z.M., Iqbal S. (2009): Biodegradation of chlorpyrifos and its hdrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. Journal of Hazardous Materials, 168: 400–405.
https://doi.org/10.1016/j.jhazmat.2009.02.059
Arunachalam C., Velmurugan A.M. (2010): Assessment and optimization of pesticide degradation by Pseudomonas putida. Environmental Sciences Europe, 5: 38–41.
Askar A.I., Ibrahim G.H., Osman K.A. (2007): Biodegradation kinetics of Bromoxynil as a pollution control technology. Egyptian Journal of Aquatic Research, 33: 111–121.
Baczyński T., Kryłów M., Malachowska-Jutsz A., Stobiecki T. (2008): Efektywność różnych dodatkow w bioremediacji gruntu skażonego chloroorganicznymi środkami ochrony roślin. Biotechnologia, 2: 162–173. Polish.
Bass C., Field L. (2011): Gene amplification and insecticide resistance. Pest Management Science, 67: 886–890.
https://doi.org/10.1002/ps.2189
Benimeli C.S., Amoroso M.J., Chaile A.P., Castro G.R. (2003): Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresource Technologys, 89: 133–138.
https://doi.org/10.1016/S0960-8524(03)00061-0
Benimeli C.S., Castro G.R., Chaile A.P., Amoroso M.J. (2006): Lindane removal induction by Streptomyces sp. M7. Journal of Basic Microbiology, 46: 348–357.
https://doi.org/10.1002/jobm.200510131
Blanchet P.F., St-George A. (1982): Kinetics of chemical degradation of organophosphorus pesticides; hydrolysis of chlorpyrifos and chlorpyrifos-methyl in the presence of copper(II). Pesticide Science, 13: 85–91.
https://doi.org/10.1002/ps.2780130113
Bourguignon N., Fuentes M.S., Benimeli C.S., Cuozzo S.A., Amoroso M.J. (2014): Aerobic removal of methoxychlor by a native Streptomyces strain: Identification of intermediate metabolites. International Biodeterioration and Biodegradation, 96: 80–86.
https://doi.org/10.1016/j.ibiod.2014.09.016
BPDB (2022): Bio-Pesticides DataBase. Hatfield, University of Hertfordshire. Available at http://sitem.herts.ac.uk/aeru/bpdb/index.htm (accessed Feb 2, 2022).
Briceno G., Fuentes M.S., Palma G., Jorquera M.A., Amoroso M.J., Diez M.C. (2012): Chloropyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. International Biodeterioration and Biodegradation, 73: 1–7.
https://doi.org/10.1016/j.ibiod.2012.06.002
Briceno G., Pizzul L., Diez M.C. (2013): Biodegradation of pesticide by Actinobacteria and their possible application in biobed system. In: Amoroso M.J., Benimeli C.S., Cuozzo S.A. (eds). Actinobacteria: Application in Bioremediation and Production of Industrial Enzymes. Boca Raton, CRC Press: 165–191.
Briceno G., Schalchli H., Rubilar G.R., Tortella G.R., Mutis A., Benimeli C.S., Palma G., Diez M.C. (2016): Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture. Chemosphere, 156: 195–203.
https://doi.org/10.1016/j.chemosphere.2016.04.118
Castillo M.A., Felis N., Aragon P., Cuesta G., Sabater C. (2006): Biodegradation of the herbicide diuron by Streptomyces isolated from soil. International Biodeterioration and Biodegradation, 58: 196–202.
https://doi.org/10.1016/j.ibiod.2006.06.020
Castoria R., De Curtis F., Lima G., Caputo L., Pacifico S., De Cicco V. (2001): Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: Study on its modes of action. Postharvest Biology and Technology, 22: 7–17.
https://doi.org/10.1016/S0925-5214(00)00186-1
Ciesielska J., Malusa E., Sas Paszt L. (2011): Środki ochrony roślin stosowane w rolnictwie ekologicznym. Opis wg Zał. II Rozporządzenia Komisji (WE) nr 889/2008 ustanawiające szczegółowe zasady wdrażania rozporządzenia Rady (WE) nr 834/2007 w sprawie produkcji ekologicznej i znakowania produktów ekologicznych w odniesieniu do produkcji ekologicznej, znakowania i kontroli. Skierniewice: 1–81. Polish.
Cuozzo S.A., Fuentes M.S., Bourguignon N., Benimeli C.S., Amoroso M.J. (2012): Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. International Biodeterioration and Biodegradation, 66: 19–24.
https://doi.org/10.1016/j.ibiod.2011.09.011
Damalas C.A., Koutroubas S.D. (2018): Current status and recent developments in biopesticide use. Agriculture, 8: 13. doi: 10.3390/agriculture8010013
https://doi.org/10.3390/agriculture8010013
Diez M.C. (2010): Biological aspects involved in the degradation of organic pollutants. Journal of Soil Science and Plant Nutrition, 10: 244–267.
https://doi.org/10.4067/S0718-95162010000100004
Dominik A., Schonthaler J. (2012): Integrowana ochrona roślin w gospodarstwie. Poradnik praktyczny – Zasady ogólne. Radom, Centrum Doradztwa Rolniczego w Brwinowie Oddział w Radomiu. Polish.
Doolotkeldieva T., Konurbaeva M., Bobusheva S. (2018): Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environmental Science and Pollution Research, 25: 31848–31862.
https://doi.org/10.1007/s11356-017-0048-5
Đorđević T.M., Đurović-Pejčev R.D. (2016): The potency of Saccharomyces cerevisiae and Lactobacillus plantarum to dissipate organophosphorus pesticides in wheat during fermentation. Journal of Food Science and Technology, 53: 4205–4215.
https://doi.org/10.1007/s13197-016-2408-4
Ellegaard-Jensen L. (2012): Fungal degradation of pesticides: Construction of microbial consortia for bioremediation [PhD thesis]. Copenhagen, University of Copenhagen.
Ene M., Alexandru M. (2008): Microscopial examination of plant reaction in case of infection with Trichoderma and Mycorrhizal fungi. Roumanian Biotechnological Letters, 13: 13–19.
Essa A.M., Reyad A.M., Redwan T.E., Ibrahim W.M. (2016): Biodegradation of the organophosphorus insecticide diazinon by Pseudomonas aeruginosa isolated from agricultural drainage ditches. Egyptian Journal of Botany, 56: 353–370.
https://doi.org/10.21608/ejbo.2016.393
Council Directive (2009): Directive 2009/128/EC of the European Parlament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Official Journal of the European Union, L309.
Comission Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union, L309.
Evans C.S., Hedger J.N. (2001): Degradation of plant cell wall polymers. In: Gadd G.M. (ed.). Fungi in Bioremediation. Cambridge, Cambridge University Press: 1–10.
Feng Y., Minard R., Bollag J. (1998): Photolytic and microbial degradation of 3,5,6-trichloro-2-pyridinol. Environmental Toxicology and Chemistry, 17: 814–819.
https://doi.org/10.1002/etc.5620170508
Frąc M. (2019): Znaczenie bioróżnorodności w zakresie rolnictwa precyzyjnego. Instytut Agrofizyki PAN: 1–42. Polish.
Gacek E. (2016): Metoda hodowlana i zarządzanie odpornością roślin na choroby. In: Gacek E., Głazek M., Matyjaszczyk E., Pruszyński G., Pruszyński S., Stobiecki S. (eds). Metody ochrony w integrowanej ochronie roślin. Poznan, Centrum Doradztwa Rolniczego w Brwinowie: 80–107.
Gangireddygari V.S.R., Kanderi D.K., Golla R., Bangeppagari M., Gundi V.A.K.B., Ntushelo K., Bontha R.R. (2017a): Biodegradation of quinalphos by a soil bacterium – Bacillus subtilis. Pakistan Journal of Biological Sciences, 20: 410–422.
https://doi.org/10.3923/pjbs.2017.410.422
Gangireddygari V.S.R., Kalva P.K., Ntushelo K., Bangeppagari M., Djami Tchatchou A., Bontha R.R. (2017b): Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environmental Sciences Europe, 29: 1–10.
https://doi.org/10.1186/s12302-017-0109-x
Gangola S., Sharma A., Bhatt P., Khati P., Chaudhary P. (2018): Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Scientific Reports, 8: 12755. doi: 10.1038/s41598-018-31082-5
https://doi.org/10.1038/s41598-018-31082-5
Gilani R.A., Rafique M., Rehman A., Munis M.F.H., Rehman S., Chaudhary H.J. (2016): Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. Journal of Basic Microbiology, 56: 105–109.
https://doi.org/10.1002/jobm.201500336
Hack M., Nitz S., Parlar H. (1997): Behavior of [14C]atrazine, [14C]terbutylazine, and their major metabolites in the brewing process. Journal of Agricultural and Food Chemistry, 45: 1375–1380.
https://doi.org/10.1021/jf9605411
Harish R., Supreeth M., Chauhan J.B. (2013): Biodegradation of organophosphate pesticide by soil fungi. Advanced BioTech, 12: 4–8.
Huang Y., Xiao L., Li F., Xiao M., Lin D., Long X., Wu Z. (2018): Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. Molecules, 23: 2313. doi: 10.3390/molecules23092313
https://doi.org/10.3390/molecules23092313
Jayabarath J., Musfira S.A., Giridhar R., Shyam sundar S., Arulmurugan R. (2010): Biodegradation of carbofuran pesticide by saline soil actinomycetes. International Journal of Biochemistry and Biotechnology, 6: 187–192.
Jayaraman P., Naveen Kumar T., Maheswaran P., Sagadeva E., Arumugam P. (2012): In vitro studies on biodegradation of chlorpyrifos by Trichoderma viride and T. harzianum. Journal of Pure and Applied Microbiology, 6: 1465–1474.
Jensen D.F., Karlsson M., Sarrocco S., Vannacci G. (2016): Biological control using microorganisms as an alternative to disease resistance. Plant Protection Resistance Biotechnology. Chapter 18. Available at https://doi.org/10.1002/9781118867716.ch18
Jesitha K., Nimisha K.M., Manjush C.M., Harikuma P.S. (2015): Biodegradation of Endosulfan by Pseudomonas fluorescens. Environmental Processes, 2: 225–240.
https://doi.org/10.1007/s40710-015-0059-5
Kamal Z.M., Fetyan N., Ibrahim M.A., Sherif E.N. (2008): Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Australian Journal of Basic and Applied Sciences, 2: 724–732.
Kariga S.C., Rao S.S. (2011): Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011: 805187. doi: 10.4061/2011/805187
https://doi.org/10.4061/2011/805187
Katayama A., Matsumura F. (1993): Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environmental Toxicology and Chemistry, 12: 1059–1065.
https://doi.org/10.1002/etc.5620120612
Kempka J. (2014): Biologiczna ochrona roślin przed chorobami jako element integrowanej ochrony roślin. Kraków, Centrum Doradztwa Rolniczego w Brwinowie. Oddział w Krakowie. Polish.
Khan S., Zaffar H., Irshad U., Ahmad R., Khan A.R., Shah M.M., Bilal M., Iqbal M., Naqvi T. (2016): Biodegradation of malathion by Bacillus licheniformis strain ML-1. Archives of Biological Sciences, 68: 51–59.
https://doi.org/10.2298/ABS141218007K
Kitagawa E., Takahashi J., Momose Y., Iwahashi H. (2002): Effects of the pesticide thiuram: Genome-wide screening of indicator genes by yeast DNA microarray. Environmental Science and Technology, 36: 3908–3915.
https://doi.org/10.1021/es015705v
Korniłowicz-Kowalska T. (2000): Oddziaływanie grzybów glebowych (Micromycetes) na patogeny oraz szkodniki roślin i jeo praktyczny aspekt. Fragmenta Agronomica, 2: 135–149. Polish with English abstract.
Lee Y.S., Lee J.H., Hwang E.J., Lee H.J., Kim J.H., Heo J.B., Choi Y.L. (2016): Characterization of biological degradation cypermethrin by Bacillus amyloliquefaciens AP01. Journal of Applied Biological Chemistry, 59: 9–12.
https://doi.org/10.3839/jabc.2016.003
Li X., He J., Li S. (2007): Isolation of a chlorpyrifos, degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Research in Microbiology, 158: 143–149.
https://doi.org/10.1016/j.resmic.2006.11.007
Li Y., Chi M.M., Ge X.Z. (2019): Identification of a novel hydrolase encoded by hy-1 from Bacillus amyloliquefaciens for bioremediation of carbendazim contaminated soil and food. International Journal of Agricultural and Biological Engineering, 12: 218–224.
https://doi.org/10.25165/j.ijabe.20191202.4190
Liu T., Sun C., Ta N., Hong J., Yang S., Chen C. (2007): Effect of copper on the degradation of pesticides cypermethrin and cyhalothrin. Journal of Environmental Sciences, 19: 1235–1238.
https://doi.org/10.1016/S1001-0742(07)60201-0
Lin Q.S., Chen S.H., Hu M.Y., Haq M.R., Yang L., Li H. (2011): Biodegradation of cypermethrin by a newly isolated Actinomycetes HU-S-01 from wastewater sludge. International Journal of Environmental Science and Technology, 8: 45–56.
https://doi.org/10.1007/BF03326194
Low F.L., Shaw I.C., Gerrard J.A. (2005): The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening, 40: 133–137.
https://doi.org/10.1111/j.1472-765X.2004.01633.x
Maloney S.E. (2001): Pesticide degradation. In: Gadd G.M. (ed.). Fungi in Bioremediation. Cambridge, Cambridge University Press: 188–223.
Mandal K., Singh B., Jariyal M., Gupta V.K. (2013): Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicology and Environmental Safety, 93: 87–92.
https://doi.org/10.1016/j.ecoenv.2013.04.001
Mandal K., Singh B., Jariyal M., Gupta V.K. (2014): Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere, 101: 55–60.
https://doi.org/10.1016/j.chemosphere.2013.11.043
Matyjaszczyk E. (2015): Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. Pest Management Science, 71: 1201–1206.
https://doi.org/10.1002/ps.3986
Mendoza J.C., Perea Y., Salvador J.A. (2011): Bacterial biodegradation of permetrina and cypermetrina pesticides in a culture assemblage. Avances En Ciencias e Ingenieria, 2: 45–55.
Meng D., Zhang L., Meng J., Tian Q., Zhai L., Hao Z., Guan Z., Cai Y., Liao X. (2019a): Evaluation of the strain Bacillus amyloliquefaciens YP6 in phoxim degradation via transcriptomic data and product analysis. Molecules, 24: 3997. doi: 10.3390/molecules24213997
https://doi.org/10.3390/molecules24213997
Meng D., Jiang W., Li J., Huang L., Zhai L., Zhang L., Guan Z., Cai Y., Liao X. (2019b): An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. Journal of Environmental Science and Health – Part B Pesticides, Food Contaminants, and Agricultural Wastes, 54: 336–343.
https://doi.org/10.1080/03601234.2019.1571363
Ministry of Agriculture and Rural Development (2022): Integrated Plant Protection. Available at https://www.gov.pl/web/rolnictwo/integrowana-ochrona-roslin (accessed Feb 2, 2022). Polish.
Mochi D.A., Monteiro A.C., Barbosa J.C. (2005): Biological control. Action of pesticides to Metarhizium anisopliae in soil. Neotropical Entomology, 34: 961–971.
https://doi.org/10.1590/S1519-566X2005000600013
Mollea C., Bosco F., Ruggeri B. (2005): Fungal biodegradation of naphthalene: Microcosms studies. Chemosphere, 60: 636–643.
https://doi.org/10.1016/j.chemosphere.2005.01.034
Myresiotis C.K., Vryzas Z., Papadopoulou-Mourkidou E. (2012): Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation, 23: 297–310.
https://doi.org/10.1007/s10532-011-9509-6
Narayanan M., Kumarasamy S., Ranganthan M., Kandasamy S., Kandasamy G., Gnanavel K. (2020): Enzyme and metabolites attained in degradation of chemical pesticides β Cypermethrin by Bacillus cereus. Materials Today: Proceedings, 33: 3640–3645.
Novotny C., Svobodova K., Erbanova P., Cajthaml T., Kasinath A., Lang E. (2004): Lignionolytic fungi in bioremediation extracellular enzyme production and degradation rate. Soil Biology & Biochemistry, 36: 1545–1551.
Oliveira B.R., Penetra A., Cardoso V.V., Benoliel M.J., Barreto Crespo M.T., Samson R.A., Pereira V.J. (2015): Biodegradation of pesticides using fungi species found in the aquatic environment. Environmental Science and Pollution Research, 22: 11781–11791.
https://doi.org/10.1007/s11356-015-4472-0
Ong S.Q., Ahmad H., Ab Majid A.H., Jaal Z. (2019): Conservation of agricultural soil using entomopathogenic fungi: An agent with insecticides degradation potential. IOP Conference Series: Earth and Environmental Science, 380: 012014. doi: 10.1088/1755-1315/380/1/012014
https://doi.org/10.1088/1755-1315/380/1/012014
Ortiz-Hernandez M.L., Sanchez-Salinas E., Dantan-Gonzalez E., Castrejon-Godinez M.L. (2013): Pesticide biodegradation: Mechanisms, genetics and strategies to enhance the process. In: Chamy R., Rosenkranz F. (eds). Biodegradation – Life of Science. Rijeka, InTech. Available at https://doi.org/10.5772/56098
Paszczyński A., Crawford R. (2000): Recent advances in the use of fungi in environmental remediation and biotechnology. Soil Biochemistry, 10: 379–422.
Pawar K.R., Mali G.V. (2014): Biodegradation of Quinolphos insecticide by Pseudomonas strain isolated from Grape rhizosphere soils. International Journal of Current Microbiology and Applied Sciences, 3: 606–613.
Podbielska M., Szpyrka E., Piechowicz B., Sadło S., Sudoł M. (2018): Assessment of boscalid and pyraclostrobin disappearance and behavior following application of effective microorganisms on apples. Journal of Environmental Science and Health – Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53: 652–660.
https://doi.org/10.1080/03601234.2018.1474554
Podbielska M., Kus-Li Skiewicz M., Jagusztyn B., Piechowicz B., Sadło S., Słowik-Borowiec M., Twaruzek M., Szpyrka E. (2020): Influence of Bacillus subtilis and Trichoderma harzianum on penthiopyrad degradation under laboratory and field studies. Molecules, 25: 1421. doi: 10.3390/molecules25061421
https://doi.org/10.3390/molecules25061421
Prabha R., Singh D.P., Verma M.K. (2017): Microbial interactions and perspectives for bioremediation of pesticides in the soils. In: Singh D.P., Singh H.B., Prabha R. (eds). Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore, Springer: 649–671.
Rafiq N., Tariqa S.R., Zaidia F. (2012): Photocatalytic degradation studies of imidacloprid and lambda-cyhalothrin by copper metal. International Journal of Environmental Pollution Control and Management, 4: 139–145.
Rajendran P., Gunasekaran P. (2006): Microbial Bioremediation. Chennai, MJP Publishers.
Różański L. (1992): Przeminy Pestycydów w Organizmach Żywych i Środowisku. Warszawa, Państwowe Wydawnictwo Rolnicze i Leśne.
Saafan A.E., Azmy A.F., Amin M.A., Ahmed S.H., Essam T.M. (2016): Isolation and characterization of two malathion-degrading Pseudomonas sp. in Egypt. African Journal of Biotechnology, 15: 1661–1672.
https://doi.org/10.5897/AJB2016.15273
Salunkhe V.P., Sawant I.S., Banerjee K., Rajguru Y.R., Wadkar P.N., Oulkar D.P., Naik D.G., Sawant S.D. (2013): Biodegradation of profenofos by Bacillus subtilis isolated from grapevines (Vitis vinifera). Journal of Agricultural and Food Chemistry, 61: 7195–7202.
https://doi.org/10.1021/jf400528d
Sambasiva Rao K.R., Tripathy N.K., Mahalaxmi Y., Prakasham R.S. (2012): Laccase- and peroxidase-free tyrosinase production by isolated microbial strain. Journal of Microbiology and Biotechnology, 22: 207–214.
https://doi.org/10.4014/jmb.1106.06031
Schena L., Nigro F., Pentimone I., Ligorio A., Ippolito A. (2003): Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology, 30: 209–220.
https://doi.org/10.1016/S0925-5214(03)00111-X
Sette L.D., Mnedonca Alves da Costa L.A., Marsaioli A.J., Manfio G.P. (2004): Biodegradation of alachlor by soil Streptomyces. Applied Microbiology and Biotechnology, 64: 712–717.
https://doi.org/10.1007/s00253-003-1494-1
Sette L.D., De Oliveira V.M., Manfio G.P. (2005): Isolation and characterization of alachlor-degrading Actinomycetes from soil. Antonie van Leeuwenhoek, 87: 81–89.
https://doi.org/10.1007/s10482-004-1129-2
Sharma P., Sharma M., Raja M., Singh D.V., Srivastava M. (2016): Use of Trichoderma spp. in biodegradation of Carbendazim. Indian Journal of Agricultural Sciences, 86: 891–894.
Shivaramaiah H.M., Kennedy I.R. (2006): Biodegradation of endosulfan by a soil bacterium. Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41: 895–905.
https://doi.org/10.1080/03601230600806004
Spinelli V., Ceci A., Dal Bosco C., Gentili A., Persiani A.M. (2021): Glyphosate-eating fungi: Study on fungal saprotrophic strains’ ability to tolerance and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it. Microorganisms, 9: 2179. doi: 10.3390/microorganisms9112179
https://doi.org/10.3390/microorganisms9112179
Sun J., Yuan X., Li Y., Wang X., Chen J. (2001): The biochemical properties of a novel paraoxonase-like enzyme in Trichoderma atroviride strain T23 involved in the degradation of 2,2-dichlorovinyl dimethyl phosphate. Applied Microbiology and Biotechnology, 103: 8947–8962.
https://doi.org/10.1007/s00253-019-10136-2
Suryawanshi K.T., Sawant I.S., Sawant S.D., Shabeer T.P.A., Saha S., Pudale A., Dantre R.K. (2018): Field evaluation of the bio-efficacy of Bacillus subtilis DR-39 formulation for enhancing pesticide degradation in grapes and optimisation of application dose. Indian Phytopathology, 71: 571–577.
https://doi.org/10.1007/s42360-018-0074-3
Swetha V.P., Phale P.S. (2005): Metabolism of carbaryl via 1,2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5 and C6. Journal of Applied Microbiology, 71: 5951–5956.
https://doi.org/10.1128/AEM.71.10.5951-5956.2005
Szpyrka E., Podbielska M., Zwolak A., Piechowicz B., Siebielec G., Słowik-Borowiec M. (2020): Influence of a commercial biological fungicide containing Trichoderma harzianum Rifai T-22 on dissipation kinetics and degradation of five herbicides in two types of soil. Molecules, 25: 1391. doi: 10.3390/molecules25061391
https://doi.org/10.3390/molecules25061391
Tang J., Liu L., Hu S., Chen Y., Chen J. (2009): Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). Bioresource Technology, 100: 480–483.
https://doi.org/10.1016/j.biortech.2008.05.022
Vacondio B., Birolli W.G., Ferreira I.M., Seleghim M.H.R., Gonçalves S., Vasconcellos S.P., Porto A.L.M. (2015): Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatalysis and Agricultural Biotechnology, 4: 266–275.
https://doi.org/10.1016/j.bcab.2015.03.005
Vero S., Garmendia G., Gonzalez M.B., Garat F.M., Wisniewski M. (2009): Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biocontrol Science and Technology, 19: 1033–1049.
https://doi.org/10.1080/09583150903277738
Wang Y.P., Shi J.Y., Wang H., Lin Q., Chen X.C., Chen Y.X. (2007): The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety, 67: 75–81.
https://doi.org/10.1016/j.ecoenv.2006.03.007
Wołejko E., Łozowicka B., Kaczyński P., Jankowska M., Piekut J. (2016): The influence of effective microorganisms (EM) and yeast on the degradation of strobilurins and carboxamides in leafy vegetables monitored by LC-MS/MS and health risk assessment. Environmental Monitoring and Assessment, 188: 64. doi: 10.1007/s10661-015-5022-4
https://doi.org/10.1007/s10661-015-5022-4
Wolny S. (2003): Integrowana ochrona roślin, czyli jak skutecznie, bezpiecznie i ekonomicznie radzić sobie ze sprawcami chorób, szkodnikami i chwastami. Warszawa, Ministerstwo Rolnictwa i Rozwoju Wsi. Polish.
Wróblewska-Krepsztul J., Michalska-Pożoga I., Szczypiński M., Szczypiński M., Rydzkowski T. (2017): Biodegradacja: Atrakcyjna alternatywa dla obecnych technik utylizacji odpadów tworzyw polimerowych. Przetwórstwo Tworzyw, 23: 579–584. Polish with English abstract.
You G., Sayles G.D., Kupferle M.J., Kim I.S., Bishop P.L. (1996): Anaerobic DDT biotransformation: Enhancement by application of substants and low oxidation reduction potentail. Chemistry, 32: 2269–2284.