Afforestation of agricultural land affects soil structural stability and related preconditions to resist drought

https://doi.org/10.17221/156/2022-JFSCitation:

Holátko J., Holubík O., Hammerschmiedt T., Vopravil J., Kintl A., Brtnický M. (2022): Afforestation of agricultural land affects soil structural stability and related preconditions to resist drought. J. For. Sci., 68: 496–508.

download PDF

Afforestation is important for the EU forest management strategy. Afforestation of abandoned and marginal arable land is a favourable non-agricultural land use option for climate change mitigation. It may prevent threats of drought or erosion e.g. by affecting the water balance in soil via increased structural stability. The structural stability control in afforested soil is related to i.a. organic matter content, nutrient content, soil reaction, planted tree species prosperity, and amelioration. A four-year field small-plot experiment on afforestation was carried out with Chernozem covered with deciduous (oak), coniferous (pine) or mixed planting, amended with 3 doses (no-application, 0.5 kg×m–2, and 1.5 kg×m–2) of alginite. In 2013 and 2016, soil reaction pHH2O, mean weight diameter (MWD), organic matter content (LOI) and total organic carbon (TOC) were determined and related to the soil structural stability to evaluate the soil precondition to sustain drought twice per vegetation period (spring and autumn). Afforestation significantly improved MWD compared to the field soil between 2013 and 2016 from 1.63 ± 0.04 mm to 1.85 ± 0.05 mm. Tree planting significantly neutralized the soil pHH2O, mixed planting appeared to improve LOI and TOC. Four-year afforestation led also to higher structural stability, less alkaline pH and deciduous tree-related increase in LOI, which may indicate better soil sustainability to drought.

References:
Ali A., Biggs A.J.W., Marchuk A., Bennett J.M. (2019): Effect of irrigation water pH on saturated hydraulic conductivity and electrokinetic properties of acidic, neutral, and alkaline soils. Soil Science Society of America Journal, 83: 1672–1682. https://doi.org/10.2136/sssaj2019.04.0123
 
Bai Y., Zhou Y., He H. (2020): Effects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical China. Geoderma, 376: 114548. https://doi.org/10.1016/j.geoderma.2020.114548
 
Bardgett R.D., Yeates G.W., Anderson J.M. (2005): Patterns and determinants of soil biological diversity. In: Bardgett R., Usher M., Hopkins D. (eds): Biological Diversity and Function in Soils. Cambridge, Cambridge University Press: 100–118.
 
Bronick C.J., Lal R. (2005): Soil structure and management: A review. Geoderma, 124: 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
 
Buechel M., Slater L., Dadson S. (2022): Hydrological impact of widespread afforestation in great britain using a large ensemble of modelled scenarios. Communications Earth and Environment, 3: 6. https://doi.org/10.1038/s43247-021-00334-0
 
Castro Filho C., Lourenço A., Guimarães M.D.F., Fonseca I.C.B. (2002): Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil and Tillage Research, 65: 45–51. https://doi.org/10.1016/S0167-1987(01)00275-6
 
Chantigny M.H., Angers D.A., Prévost D., Vézina L.P., Chalifour F.P. (1997): Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Science Society of America Journal, 61: 262–267. https://doi.org/10.2136/sssaj1997.03615995006100010037x
 
Christensen B.T. (2001): Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52: 345–353. https://doi.org/10.1046/j.1365-2389.2001.00417.x
 
Cukor J., Vacek Z., Linda R., Remeš J., Bílek L., Sharma R.P., Baláš M., Kupka I. (2017): Effect of mineral eco-fertilizer on growth and mortality of young afforeststion. Austrian Journal of Forest Science, 134: 367–386.
 
Cunningham S.C., Mac Nally R., Baker P.J., Cavagnaro T.R., Beringer J., Thomson J.R., Thompson R.M. (2015): Balancing the environmental benefits of reforestation in agricultural regions. Perspectives in Plant Ecology, Evolution and Systematics, 17: 301–317. https://doi.org/10.1016/j.ppees.2015.06.001
 
DeSoto L., Cailleret M., Sterck F., Jansen S., Kramer K., Robert E.M.R., Aakala T., Amoroso M.M., Bigler C., Camarero J.J., Cufar K., Gea-Izquierdo G., Gillner S., Haavik L.J., Heres A.M., Kane J.M., Kharuk V.I., Kitzberger T., Klein T., Levanic T., Linares J.C., Makinen H., Oberhuber W., Papadopoulos A., Rohner B., Sanguesa-Barreda G., Stojanovic D.B., Suarez M.L., Villalba R., Martinez-Vilalta J. (2020): Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11: 545. https://doi.org/10.1038/s41467-020-14300-5
 
Di Sacco A., Hardwick K.A., Blakesley D., Brancalion P.H.S., Breman E., Cecilio Rebola L., Chomba S., Dixon K., Elliott S., Ruyonga G., Shaw K., Smith P., Smith R.J., Antonelli A. (2021): Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 27: 1328–1348. https://doi.org/10.1111/gcb.15498
 
Doelman J.C., Stehfest E., van Vuuren D.P., Tabeau A., Hof A.F., Braakhekke M.C., Gernaat D.E.H.J., van den Berg M., van Zeist W.J., Daioglou V., van Meijl H., Lucas P.L. (2020): Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26: 1576–1591. https://doi.org/10.1111/gcb.14887
 
Edwards A.P., Bremner J.M. (1967): Microaggregates in soils. Journal of Soil Science, 18: 64–73. https://doi.org/10.1111/j.1365-2389.1967.tb01488.x
 
Fernández-Ondoño E., Rojo Serrano L., Jiménez M.N., Navarro F.B., Díez M., Martín F., Fernández J., Martínez F.J., Roca A., Aguilar J. (2010): Afforestation improves soil fertility in south-eastern Spain. European Journal of Forest Research, 129: 707–717. https://doi.org/10.1007/s10342-010-0376-1
 
Ferreira V., Guérold F. (2017): Leaf litter decomposition as a bioassessment tool of acidification effects in streams: Evidence from a field study and meta-analysis. Ecological Indicators, 79: 382–390. https://doi.org/10.1016/j.ecolind.2017.04.044
 
Gömöryová E., Vass D., Pichler V., Gömöry D. (2009): Effect of alginite amendment on microbial activity and soil water content in forest soils. Biologia, 64: 585–588. https://doi.org/10.2478/s11756-009-0081-z
 
Hackl E., Pfeffer M., Donat C., Bachmann G., Zechmeister-Boltenstern S. (2005): Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology and Biochemistry, 37: 661–671. https://doi.org/10.1016/j.soilbio.2004.08.023
 
Haque S.M.S., Billett M.F., Grayston S., Ord B.G. (2006): Effects of afforestation on ammonification and nitrification rates in former agricultural soils. Soil Use and Management, 15: 117–122. https://doi.org/10.1111/j.1475-2743.1999.tb00074.x
 
Haynes R.J., Naidu R. (1998): Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutrient Cycling in Agroecosystems, 51: 123–137. https://doi.org/10.1023/A:1009738307837
 
Hoek van Dijke A.J., Herold M., Mallick K., Benedict I., Machwitz M., Schlerf M., Pranindita A., Theeuwen J.J.E., Bastin J.F., Teuling A.J. (2022): Shifts in regional water availability due to global tree restoration. Nature Geoscience, 15: 363–368. https://doi.org/10.1038/s41561-022-00935-0
 
Holubík O., Podrázský V., Vopravil J., Khel T., Remeš J. (2014): Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil and Water Research, 9: 192–200. https://doi.org/10.17221/104/2013-SWR
 
Hong S., Piao S., Chen A., Liu Y., Liu L., Peng S., Sardans J., Sun Y., Penuelas J., Zeng H. (2018): Afforestation neutralizes soil pH. Nature Communications, 9: 520. https://doi.org/10.1038/s41467-018-02970-1
 
Huang H., Tian D., Zhou L., Su H., Ma S., Feng Y., Tang Z., Zhu J., Ji C., Fang J. (2022): Effects of afforestation on soil microbial diversity and enzyme activity: A meta-analysis. Geoderma, 423: 115961. https://doi.org/10.1016/j.geoderma.2022.115961
 
IUSS Working Group WRB. (2007): World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. Rome, FAO: 116.
 
Kalhoro S., Xu X., Chen W., Hua R., Raza S., Ding K. (2017): Effects of different land-use systems on soil aggregates: A case study of the Loess Plateau (Northern China). Sustainability, 9: 1349. https://doi.org/10.3390/su9081349
 
Kaptanoğlu Berber A.S., Farasat S., Namli A. (2014): Afforestation effects on soil biochemical properties. Eurasian Journal of Forest Science, 1: 25–34.
 
Kara O., Babur E., Altun L., Seyis M. (2016): Effects of afforestation on microbial biomass C and respiration in eroded soils of Turkey. Journal of Sustainable Forestry, 35: 385–396. https://doi.org/10.1080/10549811.2016.1190759
 
Kemper W.D., Rosenau R.C. (2018): Aggregate stability and size distribution. In: Klute A. (ed.): Methods of Soil Analysis. Madison, John Wiley and Sons, Ltd.: 425–442.
 
Khalsa S.D.S., Almanza C.A., Brown P.H., Smart D.R. (2016): Leaf litter C and N cycling from a deciduous permanent crop. Soil Science and Plant Nutrition, 62: 271–276. https://doi.org/10.1080/00380768.2016.1188413
 
Kupka I., Podrázský V. (2010): Vliv druhového složení porostů na zalesněné zemědělské půdě na pedofyzikální vlastnosti a poutání uhlíku v povrchových horizontech. In: Knott R., Peňáz J., Vaněk P. (eds.): Pěstování lesů v nižších vegetačních stupních, Křtiny, Sept 6–8, 2010: 71–76. (in Czech)
 
Labaz B., Kabala C., Waroszewski J., Dudek M., Bogacz A., Gruszka D., Mlynek S. (2022): Medium-term transformation of Chernozems under broadleaf forests in the temperate climate of south-east Poland. Geoderma Regional, 30: e00535. https://doi.org/10.1016/j.geodrs.2022.e00535
 
Lan J., Wang S., Wang J., Qi X., Long Q., Huang M. (2022): The shift of soil bacterial community after afforestation influence soil organic carbon and aggregate stability in Karst region. Frontiers in Microbiology, 13: 901126. https://doi.org/10.3389/fmicb.2022.901126
 
Lichtfouse E., Hamelin M., Navarrete M., Debaeke P. (2011): Sustainable Agriculture Volume 2. Dordrecht, Springer: 992.
 
Liu R., Zhou X., Wang J., Shao J., Fu Y., Liang C., Yan E., Chen X., Wang X., Bai S.H. (2019): Differential magnitude of rhizosphere effects on soil aggregation at three stages of subtropical secondary forest successions. Plant and Soil, 436: 365–380. https://doi.org/10.1007/s11104-019-03935-z
 
Manrubia M., van der Putten W.H., Weser C., ten Hooven F.C., Martens H., Brinkman E.P., Geisen S., Ramirez K.S., Veen G.F.C. (2019): Soil functional responses to drought under range-expanding and native plant communities. Functional Ecology, 33: 2402–2416. https://doi.org/10.1111/1365-2435.13453
 
Mehlich A. (1984): Mehlich 3 soil test extractant. A modification of the Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409–1416. https://doi.org/10.1080/00103628409367568
 
Meier R., Schwaab J., Seneviratne S.I., Sprenger M., Lewis E., Davin E.L. (2021): Empirical estimate of forestation-induced precipitation changes in Europe. Nature Geoscience, 14: 473–478. https://doi.org/10.1038/s41561-021-00773-6
 
Mohanty M., Sinha N., Hati K.M., Painuli D.K., Chaudhary R.S. (2012): Stability of soil aggregates under different vegetation covers in a vertisol of central India. Journal of Agricultural Physics, 12: 133–142.
 
Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds): Methods of Soil Analysis. Part 3. Chemical Methods. Madison, Soil Science Society of America, Inc., American Society of Agronomy, Inc.: 961–1010.
 
Nemati M.R., Caron J., Gallichand J. (2002): Predicting hydraulic conductivity changes from aggregate mean weight diameter. Water Resources Research, 38: 9–11. https://doi.org/10.1029/2001WR000625
 
Nickels M.C.L., Prescott C.E. (2021): Soil carbon stabilization under coniferous, deciduous and grass vegetation in post-mining reclaimed ecosystems. Frontiers in Forests and Global Change, 4: 689594. https://doi.org/10.3389/ffgc.2021.689594
 
Novák T. (2022): Afforestation affects vertical distribution of basic soil characteristics and taxonomic status of sodic soils. Plant, Soil and Environment, 68: 245–252. https://doi.org/10.17221/53/2022-PSE
 
Pardos M., del Río M., Pretzsch H., Jactel H., Bielak K., Bravo F., Brazaitis G., Defossez E., Engel M., Godvod K., Jacobs K., Jansone L., Jansons A., Morin X., Nothdurft A., Oreti L., Ponette Q., Pach M., Riofrío J., Ruíz-Peinado R., Tomao A., Uhl E., Calama R. (2021): The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481: 118687. https://doi.org/10.1016/j.foreco.2020.118687
 
Pinheiro E.F.M., Pereira M.G., Anjos L.H.C. (2004): Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil and Tillage Research, 77: 79–84. https://doi.org/10.1016/j.still.2003.11.005
 
Podrázský V., Procházka J., Remeš J. (2011): Produkce a vývoj půdního prostředí porostů na bývalých zemědělských půdách v oblasti Českomoravské vrchoviny. Zprávy lesnického výzkumu, 56: 27–35. (in Czech)
 
Podrázský V., Holubík O., Baláš M., Kupka I., Zvolánek J., Tužinský M. and Gjurov V. (2014). Využití přípravků na bázi řas pro iniciální podporu výsadeb lesních dřevin (Use of algae-based materials for initial support of plantations of the forest tree species). In: Štefančík I. (ed.): Proceedings of Central European Silviculture. Zvolen, National Forest Centre Zvolen: 45–51. (in Czech)
 
Podrázský V., Holubík O., Vopravil J., Khel T., Moser W.K., Prknová H. (2015): Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic. Journal of Forest Science, 61: 225–234. https://doi.org/10.17221/6/2015-JFS
 
Schmid M.W., van Moorsel S.J., Hahl T., De Luca E., De Deyn G.B., Wagg C., Niklaus P.A., Schmid B. (2021): Effects of plant community history, soil legacy and plant diversity on soil microbial communities. Journal of Ecology, 10: 3007–3023. https://doi.org/10.1111/1365-2745.13714
 
Schwärzel K., Zhang L., Montanarella L., Wang Y., Sun G. (2020): How afforestation affects the water cycle in drylands: A process-based comparative analysis. Global Change Biology, 26: 944–959. https://doi.org/10.1111/gcb.14875
 
Six J., Elliott E.T., Paustian K. (2000): Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32: 2099–2103. https://doi.org/10.1016/S0038-0717(00)00179-6
 
Sparling G.P., Hart P.B.S., August J.A., Leslie D.M. (1994): A comparison of soil and microbial carbon, nitrogen, and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biology and Fertility of Soils, 17: 91–100. https://doi.org/10.1007/BF00337739
 
Szabó L.P. (2004): Characterization of alginite humic acid content. Desalination, 163: 85–91. https://doi.org/10.1016/S0011-9164(04)90180-4
 
Tardy V., Mathieu O., Leveque J., Terrat S., Chabbi A., Lemanceau P., Ranjard L., Maron P.A. (2014): Stability of soil microbial structure and activity depends on microbial diversity. Environmental Microbiology Reports, 6: 173–183. https://doi.org/10.1111/1758-2229.12126
 
Tica D., Udovic M., Lestan D. (2011): Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85: 577–583. https://doi.org/10.1016/j.chemosphere.2011.06.085
 
Tisdall J.M., Oades J.M. (1982): Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33: 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
 
Tisdall J.M., Smith S.E., Rengasamy P. (1997): Aggregation of soil by fungal hyphae. Soil Research, 35: 55–60. https://doi.org/10.1071/S96065
 
Trivedi P., Delgado-Baquerizo M., Jeffries T.C., Trivedi C., Anderson I.C., Lai K., McNee M., Flower K., Pal Singh B., Minkey D., Singh B.K. (2017): Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environmental Microbiology, 19: 3070–3086. https://doi.org/10.1111/1462-2920.13779
 
Ushio M., Wagai R., Balser T.C., Kitayama K. (2008): Variations in the soil microbial community composition of a tropical montane forest ecosystem: Does tree species matter? Soil Biology and Biochemistry, 40: 2699–2702.
 
Wang X., Zhong Z., Li W., Liu W., Zhang X., Wu S., Ren Z., Wu Q., Shen Z., Ren C., Yang G., Han X. (2020): Effects of Robinia pseudoacacia afforestation on aggregate size distribution and organic C dynamics in the central Loess Plateau of China: A chronosequence approach. Journal of Environmental Management, 268: 110558. https://doi.org/10.1016/j.jenvman.2020.110558
 
Wang J., Zhao W., Wang G., Yang S., Pereira P. (2021): Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China). Science of the Total Environment, 770: 144833. https://doi.org/10.1016/j.scitotenv.2020.144833
 
Wei X., Li X., Jia X., Shao M. (2013): Accumulation of soil organic carbon in aggregates after afforestation on abandoned farmland. Biology and Fertility of Soils, 49: 637–646. https://doi.org/10.1007/s00374-012-0754-6
 
Werden L.K., Alvarado J P., Zarges S., Calderón M E., Schilling E.M., Gutiérrez L M., Powers J.S. (2017): Using soil amendments and plant functional traits to select native tropical dry forest species for the restoration of degraded Vertisols. Journal of Applied Ecology, 55: 1019–1028. https://doi.org/10.1111/1365-2664.12998
 
Whitbread-Abrutat P.H. (1997): The potential of some soil amendments to improve tree growth on metalliferous mine wastes. Plant and Soil, 192: 199–217. https://doi.org/10.1023/A:1004234602077
 
Wu J., Zhang Q., Yang F., Lei Y., Zhang Q., Cheng X. (2016): Afforestation impacts microbial biomass and its natural 13C and 15N abundance in soil aggregates in central China. Science of the Total Environment, 568: 52–56. https://doi.org/10.1016/j.scitotenv.2016.05.224
 
Yang Y., Hobbie S.E., Hernandez R.R., Fargione J., Grodsky S.M., Tilman D., Zhu Y.G., Luo Y., Smith T.M., Jungers J.M., Yang M., Chen W.Q. (2020): Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth, 3: 176–186. https://doi.org/10.1016/j.oneear.2020.07.019
 
Yao Y., Wang X., Zeng Z., Liu Y., Peng S., Zhu Z., Piao S. (2016): The effect of afforestation on soil moisture content in northeastern China. PLoS One, 11: e0160776. https://doi.org/10.1371/journal.pone.0160776
 
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti