The impact of agricultural land afforestation on air temperatures near the surface

Vopravil J., Formánek P., Heřmanovská D., Khel T., Jacko K. (2022): The impact of agricultural land afforestation on air temperatures near the surface. J. For. Sci., 68: 485–495.

download PDF

Many studies showed that afforestation increases carbon storage and it can have effects on physical, chemical and biological properties of soil. Afforestation can affect local and regional climate and these effects differ between tropical, temperate and boreal areas. Forests are also efficient in protecting soils against erosion and their flood mitigation functions or other benefits are described in different publications. In this study, the pattern of air temperatures (20 cm, 40 cm and 60 cm above the surface) was studied 10 years after the afforestation of agricultural land (warm, mild dry region of the Czech Republic) with a mixture of broadleaved tree species (Quercus robur L., Quercus rubra L. and Acer platanoides L.) or monospecific Pinus sylvestris L. stand. The aim of our study was to find out the pattern of air temperatures (20 cm, 40 cm and 60 cm above the surface) on two plots (one of the plots ‒ old beech trees, the other plot ‒ clearing) in a beech (Fagus sylvatica L.) forest in a mildly warm, mildly wet region of the Czech Republic. The afforestation of agriculturally used land led to air temperature cooling and to a reduction of the amplitude of maximum and minimum temperatures. The average air temperature (from April 2021 to the beginning of November 2021) decreased by 0.7–1.1 °C on the afforested plots compared with the agriculturally used plot. In the beech forest, the average temperature decreased on the plot with clearing compared with the old beech trees (from the middle of September 2021 to the middle of November 2021). Our results confirm the benefits of afforestation to climate change mitigation;  buffering of extreme temperatures is important for the human thermal comfort.

Allmaras R.R., Burrows W.C., Larson W.E. (1964): Early growth of corn as affected by soil temperature. Soil Science Society of America Journal, 28: 271–275.
Bakanoğulları F., Şaylan L., Yeşilköy S. (2022): Effects of phenological stages, growth and meteorological factor on the albedo of different crop cultivars. Italian Journal of Agrometeorology, 1: 23–40.
Bala G., Caldeira K., Wickett M., Philips T.J., Lobell D.B., Delire C., Mirin A. (2007): Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America, 104: 6550–6555.
Barna M., Schieber B. (2011): Climate response to forest management in beech stands. Folia Oecologica, 38: 8–16.
Bedrna Z. (1977): Pôdotvorné procesy a pôdne režimy. Bratislava, Veda: 132. (in Slovak)
Chirino E., Sánchez J.R., Bonet A., Bellot J. (2001): Effects of afforestation and vegetation dynamics on soil erosion in a semi-arid environment (SE Spain). Transactions on Ecology and Environment, 46: 239–248.
Coutts J.R.H. (1955): Soil temperatures in an afforested area in Aberdeenshire. Quarterly Journal of the Royal Meteorological Society, 81: 72–79.
Cukor J., Zeidler A., Vacek Z., Vacek S., Šimůnek V., Gallo, J. (2020): Comparison of growth and wood quality of Norway spruce and European larch: Effect of previous land use. European Journal of Forest Research, 139: 459–472.
Ding B., Zhang Y., Yu X., Jia G., Wang Y., Wang Y., Zheng P., Li Z. (2022): Effects of forest cover type and ratio changes on runoff and its components. International Soil and Water Conservation Research, 10: 445–456.
Gallo J., Baláš M., Linda R., Kuneš I. (2020): The effects of planting stock size and weeding on survival and growth of small-leaved lime under drought-heat stress in the Czech Republic. Austrian Journal of Forest Science, 137: 43–66.
Gomyo M., Kuraji K. (2016): Effect of the litter layer on runoff and evapotranspiration using the paired watershed method. Journal of Forest Research, 21: 306–313.
Holubík O., Podrázský V., Vopravil J., Khel T., Remeš J. (2014): Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil and Water Research, 9: 192–200.
Hrabovský A., Dlapa P., Cerdà A., Kollár J. (2020): The impacts of vineyard afforestation on soil properties, water repellency and near–saturated infiltration in the Little Carpathians mountains. Water, 12: 2550.
Ilstedt U., Malmer A., Verbeeten E., Murdiyarso D. (2007): The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. Forest Ecology and Management, 251: 45–51.
IUSS Working Group WRB. (2015): World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (Update 2015). Rome, FAO: 192.
Jackson R.B., Jobbágy E.G., Avissar R., Roy S.B., Barrett D.J., Cook C.W., Farley K.A., Le Maitre D.C., McCarl B.A., Murray B.C. (2005): Trading water for carbon with biological carbon sequestration. Science, 310: 1944–1947.
Jia X., Shao M., Zhu Y., Luo Y. (2017): Soil moisture decline due to afforestation across the Loess Plateau, China. Journal of Hydrology, 546: 113–122.
Jin Z., Guo L., Fan B., Lin H., Yu Y., Zheng H., Chu G., Zhang J., Hopkins I. (2019): Effects of afforestation on soil and ambient air temperature in a pair of catchments on the Chinese Loess Plateau. Catena, 175: 356–366.
Kirschbaum M.U.F., Whitehead D., Dean S.M., Beets P.N., Shepherd J.D., Ausseil A.G.E. (2011): Implications of albedo changes following afforestation on the benefits of forests as carbon sinks. Biogeosciences, 8: 3687–3696.
Kubin E., Kemppainen L. (1991): Effect of clearcutting of boreal spruce forest on air and soil temperature conditions. Acta Forestalia Fennica, 225: 3–42.
Kupka I., Podrázský V. (2010): Vliv druhového složení porostů na zalesněné zemědělské půdě na pedofyzikální vlastnosti a poutání uhlíku v povrchových horizontech. In: Knott R., Peňáz J., Vaněk P. (eds.): Pěstování lesů v nižších vegetačních stupních, Křtiny, Sept 6–8, 2010: 71–76. (in Czech)
Kuusinen N., Kolari P., Levula J., Porcar-Castell A., Stenberg P., Berninger F. (2012): Seasonal variation in boreal pine forest albedo and effects of canopy snow on forest reflectance. Agricultural and Forest Meteorology, 164: 53–60.
Lal R., Cummings D.J. (1979): Clearing a tropical forest I. Effects on soil and micro-climate. Field Crops Research, 2: 91–107.
Li Y., Zhao M., Motesharrei S., Mu Q., Kalnay E., Li S. (2015): Local cooling and warming effects of forests based on satellite observations. Nature Communications, 6: 6603.
Li Y., Chai S., Chai Y., Li R., Lan X., Ma J., Cheng H., Chang L. (2021): Effects of mulching on soil temperature and yield of winter wheat in the semiarid rainfed area. Field Crops Research, 271: 108244.
Michelsen-Correa S., Scull P. (2005): The impact of reforestation on soil temperature. Middle States Geographer, 38: 39–44.
Ministry of Agriculture of the Czech Republic (2018): Information on Forests and Forestry in the Czech Republic by 2017. Prague, The Ministry of Agriculture of the Czech Republic: 20.
Peng S.S., Piao S., Zeng Z., Ciais P., Zhou L., Li L.Z.X., Myneni R.B., Yin Y., Zeng H. (2014): Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences, 111: 2915–2919.
Poleno Z., Vacek S., Podrázský V., Remeš J., Mikeska M., Kobliha J., Bílek L., Baláš M. (2011): Pěstování lesů I. Ekologické základy pěstování lesů. Kostelec nad Černými lesy, Lesnická práce: 320. (in Czech)
Porto P., Walling D.E., Callegari G. (2009): Investigating the effects of afforestation on soil erosion and sediment mobilisation in two small catchments in Southern Italy. Catena, 79: 181–188.
Romero-Díaz A., Belmonte-Serrato F., Ruiz-Sinoga J.D. (2010): The geomorphic impact of afforestations on soil erosion in Southeast Spain. Land Degradation and Development, 21: 188–195.
Sieber P., Böhme S., Ericsson N., Hansson P.A. (2022a): Albedo on cropland: Field–scale effects of current agricultural practices in Northern Europe. Agricultural and Forest Meteorology, 321: 108978.
Sieber P., Ericsson N., Hammar T., Hansson P.A. (2022b): Albedo impacts of current agricultural land use: Crop-specific albedo from MODIS data and inclusion in LCA of crop production. Science of the Total Environment, 835: 155455.
Song Y.T., Zhou D.W., Zhang H.X., Li G.D., Jin Y.H., Li Q. (2013): Effects of vegetation height and density on soil temperature variations. Chinese Science Bulletin, 58: 907–912.
Stan F.I., Neculau G., Zaharia L., Ioana-Toroimac G. (2014): Evapotranspiration variability of different plant types at Romanian experimental evapometric measurement stations. Climatologie, 11: 85–90.
Tang B., Zhao X., Zhao W. (2018): Local effects of forests on temperatures across Europe. Remote Sensing, 10: 529.
Tesař M., Šir M., Lichner L., Zelenková E. (2006): Influence of vegetation cover on thermal regime of mountainous catchments. Biologia, 61: S311–S314.
Vacek Z., Cukor J., Vacek S., Linda R., Prokůpková A., Podrázský V., Gallo J., Vacek O., Šimůnek V., Drábek O., Hájek V., Spasić M., Brichta J. (2021a): Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change? European Journal of Forest Research, 140: 1243–1266.
Vacek Z., Linda R., Cukor J., Vacek S., Šimůnek V., Gallo J., Vančura K. (2021b): Scots pine (Pinus sylvestris L.), the suitable pioneer species for afforestation of reclamation sites? Forest Ecology and Management, 485: 118951.
Vopravil J., Podrázský V., Khel T., Holubík O., Vacek S. (2014): Effect of afforestation of agricultural soils and tree species composition on soil physical chracteristics changes. Ekológia Bratislava, 33: 67–80.
Vopravil J., Podrázský V., Batysta M., Novák P., Havelková L. (2015): Identification of agricultural soils suitable for afforestation in the Czech Republic using a soil database. Journal of Forest Science, 61: 141–147.
Vopravil J., Podrázský V., Holubík O., Vacek S., Beitlerová H., Vacek Z. (2017): Principy zakládání porostů na bývalé zemědělské půdě v rámci ploch vymezených k zalesnění: Metodika pro praxi. Praha, VUMOP: 58. (in Czech)
Vopravil J., Formánek P., Heřmanovská D., Khel T., Jacko K. (2021a): The impact of agricultural land afforestation on soil water content in Central Bohemia. Journal of Forest Science, 67: 512–521.
Vopravil J., Formánek P., Janků J., Holubík O., Khel T. (2021b): Early changes in soil organic carbon following afforestation of former agricultural land. Soil and Water Research, 16: 228–236.
Wang L., Lee X., Schultz N., Chen S., Wei Z., Fu C., Gao Y., Yang Y., Lin G. (2018): Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia. Journal of Geophysical Research: Atmospheres, 123: 948–964.
Xu C., Yang Z., Qian W., Chen S., Liu X., Lin W., Xiong D., Jiang M., Chang C.T., Huang J.C., Yang Y. (2019): Runoff and soil erosion responses to rainfall and vegetation cover under various afforestation management regimes in subtropical montane forest. Land Degradation and Development, 30: 1711–1724.
Yang X.M., Reynolds W.D., Drury C.F., Reeb M.D. (2021): Cover crop effects on soil temperature in a clay loam soil in southwestern Ontario. Canadian Journal of Soil Science, 101: 761–770.
Yao Y., Wang X., Zeng Z., Liu Y., Peng S., Zhu Z., Piao S. (2016): The effect of afforestation on soil moisture content in northeastern China. PLoS One, 11: e0160776.
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti