The effects of arbuscular mycorrhizal fungi and deficit irrigation on the yield and sugar content of watermelons (Citrullus lanatus)
Adu M.O., Yawson D.O., Armah F.A., Asare P.A., Frimpong K.A. (2018): Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation. Agricultural Water Management, 197: 79–90.
https://doi.org/10.1016/j.agwat.2017.11.019
Carrijo D.R., Lundy M.E., Linquist B.A. (2017): Rice yields and water use under alternate wetting and drying irrigation. A meta-analysis. Field Crops Research, 203: 173–180.
https://doi.org/10.1016/j.fcr.2016.12.002
Cartmilla D.L., Alarcón A., Volderc A., Valdez-Aguilard L.A., Arnoldc M.A., Cartmille A.D. (2012): Arbuscular mycorrhizal fungi alleviate growth of Ulmus parvifolia Jacq. at suboptimal planting depths. Scientia Horticulturae, 144: 74–80.
https://doi.org/10.1016/j.scienta.2012.06.043
Chang H., Huang H.E., Cheng C.F. (2017): Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Transgenic Research, 26: 279–289.
https://doi.org/10.1007/s11248-016-0005-y
Dai N., Cohen S., Portnoy V. (2011): Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology, 76: 1–18.
https://doi.org/10.1007/s11103-011-9757-1
Dias M.C., Brüggemann W. (2007): Differential inhibition of photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. Photosynthetica, 45: 75–84.
https://doi.org/10.1007/s11099-007-0012-6
Ezzo M.I., Mohamed A.S., Glala A.A., Saleh S.A. (2020): Utilization of grafting technique for sustaining cantaloupe productivity and quality under deficit irrigation water. Bulletin of the National Research Centre, 44: 1–11.
https://doi.org/10.1186/s42269-020-0283-7
Faghih S., Zamani Z., Fatahi R., Liaghat A. (2019): Effects of deficit irrigation and kaolin application on vegetative growth and fruit traits of two early ripening apple cultivars. Biological Research, 52: 43.
https://doi.org/10.1186/s40659-019-0252-5
Gao Z., Schaffer A.A. (1999): A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiology, 119: 979–988.
https://doi.org/10.1104/pp.119.3.979
Ghannem A., Aissa I.B., Majdoub R. (2021): Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits. Environmental Science and Pollution Research, 28: 46553–46564.
https://doi.org/10.1007/s11356-020-10407-w
Gianinazzi S., Vosátka M. (2004): Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Canadian Journal of Botany-revue Canadienne de Botanique, 82: 1264–1271.
https://doi.org/10.1139/b04-072
Godt D.E., Roitsch T. (1997): Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiology, 115 : 273–282.
https://doi.org/10.1104/pp.115.1.273
Hassell R.L., Memmott F., Liere D.G. (2008): Grafting methods for watermelon production. Horticultural Science (Prague), 43: 1677–1679.
https://doi.org/10.21273/HORTSCI.43.6.1677
Hayat S., Ali B., Hasan S.A., Ahmad A. (2007): Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60: 33–41.
https://doi.org/10.1016/j.envexpbot.2006.06.002
Huang Y., Zhao L.Q., Kong Q.S., Cheng F., Niu M.G., Xie J.J., Nawaz M.A., Bie Z.L. (2016): Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Horticultural Plant Journal, 2: 105–113.
https://doi.org/10.1016/j.hpj.2016.06.003
Iwatsubo T., Nakagawa H., Ogura N. (1992): Acid invertase of melon fruit: immunochemical detection of acid invertases. Plant and Cell Physiology, 33: 1127–1133.
Jovanovic Z., Stikic R. (2018): Partial root-zone drying technique: from water saving to the improvement of a fruit quality. Frontiers in Sustainable Food Systems, 1: 1–9.
https://doi.org/10.3389/fsufs.2017.00003
Kazadi A.T., Lwalaba J.L.W., Ansey B.K., Muzulukwau J.M., Katabe G.M., Karul M.I., Baert G., Haesaert G., Mundende R.P.M. (2022): Effect of phosphorus and arbuscular mycorrhizal fungi (AMF) inoculation on growth and productivity of maize (Zea mays L.) in a tropical ferralsol. Gesunde Pflanzen, 74: 159–165.
https://doi.org/10.1007/s10343-021-00598-8
Lin X., Zhang Y., Kuang H., et al. (2013): Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genomics, 14: 335.
https://doi.org/10.1186/1471-2164-14-335
Liu J., Guo S., He H., Zhang H.Y., Gong G.O., Ren Y., Xu Y. (2013): Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiologiae Plantarum, 35: 3213–3222.
https://doi.org/10.1007/s11738-013-1356-0
Mathur S., Tomar R.S., Jajoo A. (2019): Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research, 139: 227–238.
https://doi.org/10.1007/s11120-018-0538-4
Miron D., Schaffer A.A. (1991): Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiology, 95: 623–627.
https://doi.org/10.1104/pp.95.2.623
Motaleb N.A.A., Elhady S.A.A., Ghoname A.A. (2020): AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants. Gesunde Pflanzen, 72: 29–39.
https://doi.org/10.1007/s10343-019-00480-8
Sensoy S., Ertek A., Gedik I., Kucukyumuk C. (2007): Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agricultural Water Management, 88: 269–274.
https://doi.org/10.1016/j.agwat.2006.10.015
Shireen F., Nawaz M.A., Xiong M., Ahmad A., Sohail H., Chen Z., Abouseif Y., Huang Y., Bie Z.L. (2020): Pumpkin rootstock improves the growth and development of watermelon by enhancing uptake and transport of boron and regulating the gene expression. Plant Physiology and Biochemistry, 154: 204–218.
https://doi.org/10.1016/j.plaphy.2020.06.003
Silvestri A., Fiorilli V., Miozzi, Accotto G.P., Turina M., Lanfranco L. (2019): In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics, 20: 169.
https://doi.org/10.1186/s12864-019-5561-0
Tarnabi Z.M., Iranbakhsh A., Mehregan I., Ahmadvand R. (2020): Impact of arbuscular mycorrhizal fungi (AMF) on gene expression of some cell wall and membrane elements of wheat (Triticum aestivum L.) under water deficit using transcriptome analysis. Physiology and Molecular Biology of Plants, 26: 143–162.
https://doi.org/10.1007/s12298-019-00727-8
Yativ M., Harary I., Wolf S. (2010): Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis. Journal of Plant Physiology, 167: 589–596.
https://doi.org/10.1016/j.jplph.2009.11.009
Zhang B., Tolstikov V., Turnbull C. (2010): Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proceedings of the National Academy of Sciences of the United States of America, 107: 13532–13537.
https://doi.org/10.1073/pnas.0910558107