Genetic variability for resistance to fungal pathogens in bread wheat

https://doi.org/10.17221/55/2022-CJGPBCitation:

Arif M.A.R., Arseniuk E., Börner A. (2023): Genetic variability for resistance to fungal pathogens in bread wheat. Czech J. Genet. Plant Breed., 59: 23–32.

supplementary materialdownload PDF

Sustainable global wheat production requires wheat varieties, that are sufficiently resistant to the main wheat diseases. The economically important fungal pathogens worldwide include powdery mildew (PM), yellow rust (YR), leaf rust (LR) and blotch causing pathogens including Septoria nodorum blotch (SNB) and Septoria tritici blotch (STB). Here, we present the evaluation of winter wheat varieties of diverse origin against the prevalent local populations of PM, YR, LR, STB and SNB under natural infection conditions through image-based phenotyping in two consecutive years (2019 and 2020). We found several varieties to be resistant against multiple diseases. Following the association mapping, we obtained a total of 206 marker trait associations for all the parameters scored which were condensed to 79 quantitative trait loci (QTLs) (eight QTLs for PM, 25 QTLs for LR, 11 QTLs for YR, 19 QTLs for SNB and eight QTLs for STB) based on the linkage disequilibrium among the molecular markers. The known genes present at these QTLs are discussed in detail. The varieties resistant to multiple diseases, identified with the QTLs and molecular markers can be considered as elite raw material for future wheat breeding.

References:
Abdullah A.S., Gibberd M.R., Hamblin J. (2020): Co-infection of wheat by Pyrenophora tritici-repentis and Parastagonospora nodorum in the wheatbelt of Western Australia. Crop and Pasture Science, 71: 119–127. https://doi.org/10.1071/CP19412
 
Arif M.A.R., Börner A. (2020): An SNP based GWAS analysis of seed longevity in wheat. Cereal Research Communications, 48: 149–156. https://doi.org/10.1007/s42976-020-00025-0
 
Arif M.A.R., Nagel M., Neumann K., Kobiljski B., Lohwasser U., Börner A. (2012a): Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica, 186: 1–13.
 
Arif M.A.R., Nagel M., Kobiljski B., Neumann K., Lohwasser U., Börner A. (2012b): An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica, 188: 409–417. https://doi.org/10.1007/s10681-012-0705-1
 
Arif M.A.R., Waheed M.Q., Lohwasser U., Shokat S., Alqudah A.M., Volkmar C., Börner A. (2022): Genetic insight into the insect resistance in bread wheat exploiting the untapped natural diversity. Frontiers in Genetics, 13: 898905. https://doi.org/10.3389/fgene.2022.828905
 
Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007): TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23: 2633–2635. https://doi.org/10.1093/bioinformatics/btm308
 
Chartrain L., Joaquim P., Berry S.T., Arraiano L.S., Azanza F., Brown J.K.M. (2005a): Genetics of resistance to septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theoretical and Applied Genetics, 110: 1138–1144.
 
Chartrain L., Berry S., Brown J. (2005b): Resistance of wheat line Kavkaz-K4500 L. 6. A. 4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology, 95: 664–671. https://doi.org/10.1094/PHYTO-95-0664
 
Chen X. (2005): Epidemiology and control of stripe rust [Puccinia striiformis f.sp. tritici] on wheat. Canadian Journal of Plant Pathology, 27: 314–337. https://doi.org/10.1080/07060660509507230
 
Cheng P., Chen X. (2010): Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377 s. Theoretical and Applied Genetics, 121: 195–204. https://doi.org/10.1007/s00122-010-1302-0
 
Chhetri M. (2015): Molecular Mapping and Genetic Characterization of Rust Resistance in Wheat. Sydney, University of Sydney.
 
Dababat A., Arif M.A.R., Toktay H., Atiya O., Shokat S., Gul E., Imren M., Singh S. (2021): A GWAS to identify the cereal cyst nematode (Heterodera filipjevi) resistance loci in diverse wheat prebreeding lines. Journal of Applied Genetics, 62: 93–98. https://doi.org/10.1007/s13353-020-00607-y
 
Dean R., Van Kan J.A., Pretorius Z.A., Hammond‐Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J. (2012): The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13: 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
 
Dimmock J., Gooding M. (2002): The influence of foliar diseases, and their control by fungicides, on the protein concentration in wheat grain: A review. Journal of Agricultural Sciences, 138: 349–366. https://doi.org/10.1017/S0021859602002058
 
Duplessis S., Joly D., Dodds P. (2012): Rust effectors. In: Martin F., Kamoun S. (eds): Effectors in Plant-Microbe Interactions. West Sussex, John Wiley & Sons, Inc.
 
Feng J., Wang M., Chen X., See D., Zheng Y., Chao S., Wan A. (2015): Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL. Phytopathology, 105: 1206–1213. https://doi.org/10.1094/PHYTO-03-15-0060-R
 
Figueroa M., Hammond‐Kosack K.E., Solomon P.S. (2018): A review of wheat diseases – A field perspective. Molecular Plant Pathology, 19: 1523–1536. https://doi.org/10.1111/mpp.12618
 
Fones H., Gurr S. (2015): The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genetics and Biology, 79: 3–7. https://doi.org/10.1016/j.fgb.2015.04.004
 
Francki M.G. (2013): Improving Stagonospora nodorum resistance in wheat: A review. Crop Science, 53: 355–365. https://doi.org/10.2135/cropsci2012.06.0347
 
Hassan R., Waheed M.Q., Shokat S., Arif M.A.R., Tariq R., Arif M., Arif A. (2020): Estimation of genomic diversity using sequence related amplified polymorphism (SRAP) markers in a mini core collection of wheat germplasm from Pakistan. Cereal Research Communications, 48: 33–40. https://doi.org/10.1007/s42976-019-00006-y
 
Hwang J.U., Song W.Y., Hong D., Ko D., Yamaoka Y., Jang S., Yim S., Lee E., Khare D., Kim K. (2016): Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Molecular Plant, 9: 338–355. https://doi.org/10.1016/j.molp.2016.02.003
 
Kang Y., Barry K., Cao F., Zhou M. (2020a): Genome-wide association mapping for adult resistance to powdery mildew in common wheat. Molecular Biology Reporter, 47: 1241–1256. https://doi.org/10.1007/s11033-019-05225-4
 
Kang Y., Zhou M., Cao F., Barry K. (2020b): Mechanisms of powdery mildew resistance of wheat – A review of molecular breeding. Plant Pathology, 69: 601–617.
 
Kobiljski B., Quarrie S., Dencic S., Kirby J., Iveges M. (2002): Genetic diversity of the Novi Sad wheat core collection revealed by microsatellites. Cellular and Molecular Biology Letters, 7: 685–694.
 
Krattinger S.G., Lagudah E.S., Spielmeyer W., Singh R.P., Huerta-Espino J., McFadden H., Bossolini E., Selter L.L., Keller B. (2009): A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323: 1360–1363. https://doi.org/10.1126/science.1166453
 
Lapin D., Van den A.G. (2013): Susceptibility to plant disease: More than a failure of host immunity. Trends in Plant Sciences, 18: 546–554. https://doi.org/10.1016/j.tplants.2013.05.005
 
Li C.X., Xu W.G., Guo R., Zhang J.Z., Qi X.I., Hu L., Zhao M. (2018): Molecular marker assisted breeding and genome composition analysis of Zhengmai 7698, an elite winter wheat cultivar. Scientific Reports, 8: 1–8.
 
Line R.F. (2002): Stripe rust of wheat and barley in North America: A retrospective historical review. Annual Review of Phytopathology, 40: 75–118. https://doi.org/10.1146/annurev.phyto.40.020102.111645
 
Marone D., Russo M.A., Laidò G., De Vita P., Papa R., Blanco A., Gadaleta A., Rubiales D., Mastrangelo A.M. (2013): Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: From consensus regions to candidate genes. BMC Genomics, 14: 1–17. https://doi.org/10.1186/1471-2164-14-562
 
McIntosh R.A., Wellings C.R., Park R.F. (1995): Wheat rusts: An atlas of resistance genes. Melbourne, CSIRO Publishing.
 
McIntosh R., Yamazaki Y., Dubcovsky J., Rogers W., Morris C., Sommers D. (2008): Catalogue of gene symbols for wheat: 2008. In: Appels R., Eastwood R., Lagudah E., Langridge P., Mackay M., McIntyre L., et al. (eds.): Proceedings of the 11th International Wheat Genetics. Sydney, Sydney University Press.
 
Milus E.A., Kristensen K., Hovmøller M.S. (2009): Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f.sp. tritici causing stripe rust of wheat. Phytopathology, 99: 89–94. https://doi.org/10.1094/PHYTO-99-1-0089
 
Mohler V., Stadlmeier M. (2019): Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). Journal of Applied Genetics, 60: 291–300. https://doi.org/10.1007/s13353-019-00518-7
 
Pinto da Silva G.B., Zanella C.M., Martinelli J.A., Chaves M.S, Hiebert C.W., McCallum B.D., Boyd L.A. (2018): Quantitative trait loci conferring leaf rust resistance in hexaploid wheat. Phytopathology, 108: 1344–1354. https://doi.org/10.1094/PHYTO-06-18-0208-RVW
 
Pritchard J.K., Stephens M., Donnelly P. (2000): Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. https://doi.org/10.1093/genetics/155.2.945
 
Ray D.K., Mueller N.D., West P.C., Foley J.A. (2013): Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8: e66428. https://doi.org/10.1371/journal.pone.0066428
 
Riaz A., KockAppelgren P., Hehir J.G., Kang J., Meade F., Cockram J., Milbourne D., Spink J., Mullins E., Byrne S. (2020): Genetic analysis using a multi-parent wheat population identifies novel sources of Septoria Tritici blotch resistance. Genes, 11: 887. https://doi.org/10.3390/genes11080887
 
Roelfs A.P., Singh R.P., Saari E.E. (1992): Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, CIMMYT.
 
Singh P.K., Singh S., Deng Z., He X., Kehel Z., Singh R.P. (2019): Characterization of QTLs for seedling resistance to tan spot and Septoria nodorum blotch in the PBW343/Kenya Nyangumi wheat recombinant inbred lines population. International Journal of Molecular Sciences, 20: 5432. https://doi.org/10.3390/ijms20215432
 
Sui X., Wang M., Chen X. (2009): Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology, 99: 1209–1215. https://doi.org/10.1094/PHYTO-99-10-1209
 
Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B.E., Maccaferri M., Salvi S., Milner S.G., Cattivelli L. (2014): Characterization of polyploid wheat genomic diversity using a high‐density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12: 787–796. https://doi.org/10.1111/pbi.12183
 
Wolverton S.E., Wu J. (2019): Comprehensive Dermatologic Drug Therapy. Philadephia, Elsevier Health Sciences.
 
Yu J., Pressoir G., Briggs W.H., Bi I.V., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., Nielsen D.M., Holland J.B. (2006): A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38: 203. https://doi.org/10.1038/ng1702
 
Zhang X., Han D., Zeng Q., Duan Y., Yuan F., Shi J., Wang Q., Wu J., Huang L., Kang Z. (2013): Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS ONE, 8: e57885. https://doi.org/10.1371/journal.pone.0057885
 
supplementary materialdownload PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti