Transcriptome and proteome analysis of the fig (Ficus carica L.) cultivar Orphan and its mutant Hongyan based on the fruit peel colour in South China

https://doi.org/10.17221/42/2022-CJGPBCitation:

Wei L.Z., Cheng J.H., Xiang J., Zheng T., Wu J. (2023): Transcriptome and proteome analysis of the fig (Ficus carica L.) cultivar Orphan and its mutant Hongyan based on the fruit peel colour in South China. Czech J. Genet. Plant Breed., 59: 33–42.

supplementary materialdownload PDF

The external fruit colour is an important parameter of the fig fruit quality. Fig anthocyanin content is critical for the peel colour. The peel of mature fruits of the fig cultivar Orphan and its red peel bud mutant Hongyan were separated for a transcriptomic and proteomic analysis. A total of 162 different abundance proteins (DAPs) and 5 015  differentially expressed genes (DEGs) were identified. The correlation analysis revealed that only two and 15 genes were downregulated and upregulated, respectively, at both the transcriptome and proteome levels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the enrichment pathways including Tropane, piperidine and pyridine alkaloid biosynthesis, phenylalanine metabolism and isoquinoline alkaloid biosynthesis for DEGs, and protein processing in the endoplasmic reticulum and flavonoid biosynthesis may contribute to the mutant color phenotype. Our results provide transcriptomic and proteomic information for two fig cultivars and may help to clarify the potential mechanisms of fig colouration.

References:
Aljane F., Neily M.H., Msaddak A. (2020): Phytochemical characteristics and antioxidant activity of several fig (Ficus carica L.) ecotypes. Italian Journal of Food Science, 32: 755–768.
 
Allan A.C., Hellens R.P., Laing W.A. (2008): MYB transcription factors that colour our fruit. Trends in Plant Science, 13: 99–102. https://doi.org/10.1016/j.tplants.2007.11.012
 
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
 
Chai L., Li Y., Chen S., Perl A., Zhao F., Ma H. (2014): RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Plant Science, 229: 215–224. https://doi.org/10.1016/j.plantsci.2014.09.010
 
Crisosto C.H., Bremer V., Ferguson L., Crisosto G.M. (2010): Evaluating quality attributes of four fresh fig (Ficus carica L.) cultivars harvested at two maturity stages. HortScience, 45: 707–710. https://doi.org/10.21273/HORTSCI.45.4.707
 
Dueñas M., Pérez-Alonso J.J., Santos-Buelga C., Escribano-Bailón T. (2008): Anthocyanin composition in fig (Ficus carica L.). Journal of Food Composition and Analysis, 21: 107–115. https://doi.org/10.1016/j.jfca.2007.09.002
 
Fiddler L., Hecht L., Nelson E.E., Nelson E.N., Ross J. (2011): SPSS for Windows 16.0: A Basic Tutorial. Social Science Research and Instruction Center. California State University.
 
Gorovits R., Moshe A., Ghanim M., Czosnek H. (2013): Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PLoS ONE, 8: e70280. https://doi.org/10.1371/journal.pone.0070280
 
Gowd V., Jia Z., Chen W. (2017): Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science and Technology, 68: 1–13. https://doi.org/10.1016/j.tifs.2017.07.015
 
Höll J., Vannozzi A., Czemmel S., D’Onofrio C., Walker A.R., Rausch T., Lucchin M., Boss P.K., Dry I.B., Bogs J. (2013): The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell, 25: 4135–4149. https://doi.org/10.1105/tpc.113.117127
 
Khadari B., Lashermes P., Kjellberg F. (1995): RAPD fingerprints for identification and genetic characterization of fig (Ficus carica L.) genotypes. Journal of Genetics and Breeding, 49: 77–77.
 
Kislev M.E., Hartmann A., Bar-Yosef O. (2006): Early domesticated fig in the Jordan Valley. Science, 312: 1372–1374. https://doi.org/10.1126/science.1125910
 
Lindquist S., Craig E.A. (1988): The heat-shock proteins. Annual Review of Genetics, 22: 631–677. https://doi.org/10.1146/annurev.ge.22.120188.003215
 
Luo X., Cao D., Li H., Zhao D., Xue H., Niu J., Chen L., Zhang F., Cao S. (2018): Complementary iTRAQ-based proteomic and RNA sequencing-based transcriptomic analyses reveal a complex network regulating pomegranate (Punica granatum L.) fruit peel colour. Scientific Reports, 8: 1–13. https://doi.org/10.1038/s41598-018-30088-3
 
Marei N., Crane J.C. (1971): Growth and respiratory response of fig (Ficus carica L. cv. Mission) fruits to ethylene. Plant Physiology, 48: 249–254. https://doi.org/10.1104/pp.48.3.249
 
Mori K., Shirasawa K., Nogata H., Hirata C., Tashiro K., Habu T., Kim S., Himeno S., Kuhara S., Ikegami H. (2017): Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Scientific Reports, 7: 41124. https://doi.org/10.1038/srep41124
 
Page M., Sultana N., Paszkiewicz K., Florance H., Smirnoff N. (2012): The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: Further evidence for redox control of anthocyanin synthesis. Plant, Cell and Environment, 35: 388–404. https://doi.org/10.1111/j.1365-3040.2011.02369.x
 
Pascual-Teresa D., Moreno D.A., García-Viguera C. (2010): Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11: 1679–1703. https://doi.org/10.3390/ijms11041679
 
Queitsch C., Hong S.-W., Vierling E., Lindquist S. (2000): Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12: 479–492. https://doi.org/10.1105/tpc.12.4.479
 
Sabehat A., Weiss D., Lurie S. (1996): The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiology, 110: 531–537. https://doi.org/10.1104/pp.110.2.531
 
Sato Y., Yokoya S. (2008): Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant Cell Reports, 27: 329–334. https://doi.org/10.1007/s00299-007-0470-0
 
Solomon A., Golubowicz S., Yablowicz Z., Grossman S., Bergman M., Gottlieb H.E., Altman A., Kerem Z., Flaishman M.A. (2006a): Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54: 7717–7723. https://doi.org/10.1021/jf060497h
 
Tanaka Y., Sasaki N., Ohmiya A. (2008): Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant Journal, 54: 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
 
Treutter D. (2005): Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7: 581–591. https://doi.org/10.1055/s-2005-873009
 
Wang B., He J., Bai Y., Yu X., Li J., Zhang C., Xu W., Bai X., Cao X., Wang S. (2013): Root restriction affected anthocyanin composition and up-regulated the transcription of their biosynthetic genes during berry development in ‘Summer Black’grape. Acta Physiologiae Plantarum, 35: 2205–2217. https://doi.org/10.1007/s11738-013-1257-2
 
Wang Z., Cui Y., Vainstein A., Chen S., Ma H. (2017): Regulation of fig (Ficus carica L.) fruit color: Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Frontiers in Plant Science, 8: 1990. https://doi.org/10.3389/fpls.2017.01990
 
Wei L., Cao Y., Cheng J., Xiang J., Shen B., Wu J. (2020): Comparative transcriptome analyses of a table grape ‘Summer Black’ and its early-ripening mutant ‘Tiangong Moyu’ identify candidate genes potentially involved in berry development and ripening. Journal of Plant Interactions, 15: 213–222. https://doi.org/10.1080/17429145.2020.1760367
 
Young J.C., Moarefi I., Hartl F.U. (2001): Hsp90: A specialized but essential protein-folding tool. Journal of Cell Biology, 154: 267. https://doi.org/10.1083/jcb.200104079
 
Zhao X., Li W.-F., Wang Y., Ma Z.-H., Yang S.-J., Zhou Q., Mao J., Chen B.-H. (2019): Elevated CO2 concentration promotes photosynthesis of grape (Vitis vinifera L. cv. ‘Pinot noir’) plantlet in vitro by regulating RbcS and Rca revealed by proteomic and transcriptomic profiles. BMC Plant Biology, 19: 1–16. https://doi.org/10.1186/s12870-019-1644-y
 
supplementary materialdownload PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti