Genetic diversity and proteomic analysis of vegetable soybean (Glycine max (L.) Merrill) accessions grown in mineral and BRIS soils

https://doi.org/10.17221/38/2022-CJGPBCitation:

Zakaria N.H., Nordin M.S., Ibrahim M.A., Abdul Majid F.A., Zainuddin Z. (2023): Genetic diversity and proteomic analysis of vegetable soybean (Glycine max (L.) Merrill) accessions grown in mineral and BRIS soils. Czech J. Genet. Plant Breed., 59: 14–22.

supplementary materialdownload PDF

Knowledge of the molecular mechanisms of response to environmental stress is fundamental for the development of genetically stress-tolerant crops. This study aims to find vegetable soybean accessions tolerant to cultivation in stressful tropical environments. Fourteen accessions of the vegetable soybean (Glycine max (L.) Merrill) were grown in mineral and beach ridges interspersed with swale (BRIS) soils. The genetic diversity, estimated using inter-simple sequence repeat (ISSR) markers, revealed 42.50% polymorphism and was regarded as moderate. The unweighted pair-group method arithmetic average (UPGMA) analysis allocated the tested accessions into five major clusters at a similarity coefficient level of 0.43. The lowest values of the genetic distance were between IIUMSOY11 and IIUMSOY13 & IIUMSOY13 and IIUMSOY14, indicating that these accessions were more genetically distant from the other accessions. Ten differentially expressed proteins were identified in the three selected accessions IIUMSOY1, IIUMSOY11 and IIUMSOY14 using mass spectrometry, revealing a unique expression of the proteins involved in the storage, flavonoid metabolism, protein modification, oxidative stress defence, carbohydrate metabolism and respiratory chain. The findings may be valuable for the selection of genetically diverse accessions, to enhance the breeding of vegetable soybean genotypes suitable for stressful tropical environments.

References:
Aghaei M., Darvishzadeh R., Hassani A. (2012): Molecular characterisation and similarity relationships among Iranian basil (Ocimum basilicum L.) accessions using inter simple sequence repeat markers. The Revista Ciência Agronômica, 43: 312–320.  https://doi.org/10.1590/S1806-66902012000200014
 
Aleem M., Aleem S., Sharif I., Wu Z., Tahir A., Atif R.M., Cheema H.M.N., Shakeel A., Lei S., Yu D., Wang H., Kaushik P., Alyemeni M.N., Bhat J.A., Ahmad P. (2022): Characterisation of SOD and GPX gene families in the soybeans in response to drought and salinity stresses. Antioxidants, 11: 460. https://doi.org/10.3390/antiox11030460
 
Arslan E., Gülbahçe Mutlu E., Dursun Ö., Bağcı S.A. (2020): Comparative analysis of agronomic traits and ISSR method among some soybeans [Glycine Max (L.) Merr.] genotypes. KSU Journal of Agricultural Nature, 2: 687–696.  https://doi.org/10.18016/ksutarimdoga.v23i53104.631286
 
Awoke T. (2022): Performance evaluation of soybean (Glycine max L.) varieties for growth, yield and yield components under irrigation at lowland area of south Omo zone, Southern Ethiopia. Journal of Agriculture and Aqua-culture, 4: 1–6.
 
Begna T. (2021): Role and economic importance of crop genetic diversity in food security. Journal of Agricultural Science and Food Technology, 7: 164–169.
 
Bisen A., Khare D., Nair P. (2015): SSR analysis of 38 genotypes of soybean (Glycine max (L.) Merr.) genetic diversity in India. Physiology Molecular Biology Plants, 21: 109–115. https://doi.org/10.1007/s12298-014-0269-8
 
Carrão-Panizzi M.C, Kwanyuen P., Erhan S.Z., Lopes I.O.N. (2008): Genetic variation and environmental effects on beta-conglycinin and glycinin content in Brazilian soybean cultivars. Brazil Agricultural Research, 43: 1105–1114.  https://doi.org/10.1590/S0100-204X2008000900002
 
Chen H., Guo A., Wang J., Gao J., Zhang S., Zheng J., Huang X., Xi J., Yi K. (2020): Evaluation of genetic diversity within asparagus germplasm based on morphological traits and ISSR markers. Physiology and Molecular Biology of Plants, 26: 305–315.  https://doi.org/10.1007/s12298-019-00738-5
 
Devasirvatham V., Tan D. (2018): Impact of high temperature and drought stresses on chickpea production. Agronomy, 8: 145. https://doi.org/10.3390/agronomy8080145
 
Du Plessis M., Vorster J., Kunert K. (2013): Cysteine protease expression and activity in soybean nodules during development and stress. South African Journal of Botany, 86: 164. https://doi.org/10.1016/j.sajb.2013.02.097
 
Gul I., Alinca S. (2015): Molecular characterisation and determination of morphological traits of the button medic (Medicago orbicularis L.). Pakistan Journal of Biological Sciences, 18: 141–145. https://doi.org/10.3923/pjbs.2015.141.145
 
Guo C.G., Shang Z., Yan J., Li S., Li G.Q., Liu R.Z. (2015): A tunable isoelectric focusing via moving reaction boundary for two-dimensional gel electrophoresis and proteomics. Talanta, 137: 197–203. https://doi.org/10.1016/j.talanta.2015.01.038
 
Henchion M., Hayes M., Mullen A.M., Fenelon M., Tiwari B. (2017): Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods, 6: 53.  https://doi.org/10.3390/foods6070053
 
Iannucci A., Codianni P. (2019): Phenotypic parent selection within a khorasan wheat collection and genetic variation in advanced breeding lines derived by hybridization with durum wheat. Frontiers in Plant Science, 20: 1460. https://doi.org/10.3389/fpls.2019.01460
 
Ighodaro O.M., Akinloye O.A. (2018): First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54: 287–293. https://doi.org/10.1016/j.ajme.2017.09.001
 
Krager J. (2020): Assessing the quantification of soy protein in incurred matrices using targeted LC-MS/MS. [Master Thesis.] Lincoln, University of Nebraska.
 
Kumar S.P.J., Susmita C., Sripathy K.V. (2022): Molecular characterisation and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Molecular Biology Report, 49: 2129–2140. https://doi.org/10.1007/s11033-021-07030-4
 
Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., Yin H. (2021): The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences, 22: 12824.  https://doi.org/10.3390/ijms222312824
 
Liu Y., Lu S., Liu K. (2019): Proteomics: A powerful tool to study plant responses to biotic stress. Plant Methods, 15: 135. https://doi.org/10.1186/s13007-019-0515-8
 
Malefo M.B., Mathibela E.O., Crampton B.G., Makgopa M.E. (2020): Investigating the role of Bowman-Birk serine protease inhibitor in Arabidopsis plants under drought stress. Plant Physiology and Biochemistry, 149: 286–293. https://doi.org/10.1016/j.plaphy.2020.02.007
 
Mustapha Z., Mat N., Othman R., Zakaria A.J. (2017): Quantification of BRIS soil bacteria at Tembila, Besut Terengganu. AGRIVITA Journal of Agricultural Science, 39: 252–256.  https://doi.org/10.17503/agrivita.v39i3.1292
 
Naimah R., Nur Amirah Y., Adzemi M.A., Wan Zaliha W.S. (2014): Quality and growth development of roselle grown on bris soil in relation to regulated deficit irrigation. Journal of Tropical Plant Physiology, 6: 23–34.
 
Natarajan S.S. (2014): Analysis of soybean seed proteins using proteomics. Journal of Data Mining, Genomic & Proteomic, 5: 113.
 
Neupane P., Bhuju S., Thapa N., Bhattarai H. (2019): ATP synthase: Structure, function and inhibition. Biomolecular Concepts, 10: 1–10.  https://doi.org/10.1515/bmc-2019-0001
 
Nkongolo K., Alamri S., Michael P. (2020): Assessment of genetic variation in soybean (Glycine max) accessions from international gene pools using RAPD markers: Comparison with the ISSR system. American Journal of Plant Sciences, 11: 1414–1428.  https://doi.org/10.4236/ajps.2020.119102
 
Risk B.A., Edwards N.J., Giddings M.C. (2013): A peptide-spectrum scoring system based on ion alignment, intensity, and pair probabilities. Journal of Proteome Research, 12: 4240–4247.  https://doi.org/10.1021/pr400286p
 
Rizzo G., Baroni L. (2018): Soy, soy foods and their role in vegetarian diets. Nutrients, 10: 43.  https://doi.org/10.3390/nu10010043
 
Shakoor A., Zaib G., Zhao F., Li W., Lan X., Esfandani-Bozchaloyi S. (2022): ISSR markers and morphometry determine genetic diversity and population structure in Hedera helix L. Czech Journal Genetics and Plant Breeding, 58: 73−82.  https://doi.org/10.17221/93/2021-CJGPB
 
Sobhanian H., Razavizadeh R., Nanjo Y., Ehsanpour A., Jazii F., Motamed N., Komatsu S. (2010): Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteomic Science, 8: 19.  https://doi.org/10.1186/1477-5956-8-19
 
Tanaka S., Saito H., Kajiwara N., Paing T.N., Mohd Yusoff K.H., Abe S.S., Nakao A., Yanai J. (2021): Long-term changes in paddy soil fertility in Peninsular Malaysia during 50 years after the Green Revolution with special reference to their physiographic environments. Soil Science and Plant Nutrition, 67: 80–88. https://doi.org/10.1080/00380768.2020.1840264
 
Tandzi L.N., Bradley G., Mutengwa C. (2019): Morphological responses of maise to drought, heat and combined stresses at seedling stage. Journal of Biological Sciences, 19: 7–16. https://doi.org/10.3923/jbs.2019.7.16
 
Witzel K., Weidner A., Surabhi G.K., Varshney R.K., Kunze G., Buck-Sorlin G.H., Börner A., Mock H.P. (2010): Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant, Cell & Environment, 33: 211–222.
 
Yang K., Qing Y., Yu Q., Tang X., Chen G., Fang R., Liu H. (2021): By-product feeds: Current understanding and future perspectives. Agriculture, 11: 207. https://doi.org/10.3390/agriculture11030207
 
supplementary materialdownload PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti