Diverse role of basic Helix-Loop-Helix (bHLH) transcription factor superfamily genes in the fleshy fruit-bearing plant species
Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K. (2006): Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25: 1263–1274.
https://doi.org/10.1007/s00299-006-0204-8
Aslam M., Jakada B.H., Fakher B., Greaves J.G., Niu X., Su Z., Cheng Y., Cao S., Wang X., Qin Y. (2020): Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (Ac CIB2) participates in flowering time regulation and abiotic stress response. BMC Genomics, 21: 1–13.
https://doi.org/10.1186/s12864-020-07152-2
Atchley W.R., Fitch W.M. (1997): A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences, 94: 5172–5176.
https://doi.org/10.1073/pnas.94.10.5172
Ballester A.R., Molthoff J., de Vos R., te Lintel Hekkert B., Orzaez D., Fernández-Moreno J.P., Tripodi P., Grandillo S., Martin C., Heldens J., Ykema M. (2010): Biochemical and molecular analysis of pink tomatoes: Deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology, 152: 71–84.
https://doi.org/10.1104/pp.109.147322
Carretero-Paulet L., Galstyan A., Roig-Villanova I., Martínez-García J.F., Bilbao-Castro J.R., Robertson D.L. (2010): Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis poplar rice moss and algae. Plant Physiology, 153: 1398–1412.
https://doi.org/10.1104/pp.110.153593
Chen L., Chen Y., Jiang J., Chen S., Chen F., Guan, Z., Fang W. (2012): The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Reports, 31: 1747–1758.
https://doi.org/10.1007/s00299-012-1288-y
Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K. (2003): ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17: 1043–1054.
Dong H., Chen Q., Dai Y., Hu W., Zhang S., Huang X. (2021): Genome-wide identification of PbrbHLH family genes and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri). BMC Plant Biolology, 21: 1–20.
https://doi.org/10.1186/s12870-021-02862-5
Fan Z.Q., Ba L.J., Shan W., Xiao Y.Y., Lu W.J., Kuang J.F., Chen J.Y. (2018): A banana R2R3‐MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation‐related genes and MabHLH6. The Plant Journal, 96: 1191–1205.
https://doi.org/10.1111/tpj.14099
Feller A., Machemer K., Braun E.L., Grotewold E. (2011): Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66: 94–116.
https://doi.org/10.1111/j.1365-313X.2010.04459.x
Feng F., Li M., Ma F., Cheng L. (2013): Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiology and Biochemistry, 69: 54–61.
https://doi.org/10.1016/j.plaphy.2013.04.020
Feng X.M., Zhao Q., Zhao L.L., Qiao Y., Xie X.B., Li H.F., Yao Y.X., You C.X., Hao Y.J. (2012): The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biology, 12: 1–14.
https://doi.org/10.1186/1471-2229-12-22
Feng X., An Y., Zheng J., Sun M., Wang L. (2016): Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-box gene, MdMADS1. Frontiers in Plant Science, 7: 1615.
https://doi.org/10.3389/fpls.2016.01615
Gao Y., Liu J., Chen Y., Tang H., Wang Y., He Y., Ou Y., Sun X., Wang S., Yao Y. (2018): Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Horticulture Research, 5: 1–18.
https://doi.org/10.1038/s41438-018-0032-3
Guo J., Sun B., He H., Zhang Y., Tian H., Wang B. (2021): Current understanding of bHLH transcription factors in plant abiotic stress tolerance. International Journal of Molecular Sciences, 22: 4921.
https://doi.org/10.3390/ijms22094921
Huang X., Li K., Jin C., Zhang S. (2015): ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Scientific Reports, 5: 1–16.
https://doi.org/10.1038/srep17620
Jezek M., Zörb C., Merkt N., Geilfus C.M. (2018): Anthocyanin management in fruits by fertilization. Journal of Agricultural and Food Chemistry, 66: 753–764.
https://doi.org/10.1021/acs.jafc.7b03813
Kavas M., Baloğlu M.C., Atabay E.S., Ziplar U.T., Daşgan H.Y., Ünver T. (2016): Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Molecular Genetics and Genomics, 291: 129–143.
https://doi.org/10.1007/s00438-015-1095-6
Kayesh E., Shangguan L., Korir N.K., Sun X., Bilkish N., Zhang Y., Han J., Song C., Cheng Z.M., Fang J. (2013): Fruit skin color and the role of anthocyanin. Acta Physiologiae Plantarum, 35: 2879–2890.
https://doi.org/10.1007/s11738-013-1332-8
Khan I.A., Cao K., Guoa J., Li Y., Wang Q., Yang X., Wu J., Fang W., Wang L. (2022): Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. Plant Science, 316: 111151.
https://doi.org/10.1016/j.plantsci.2021.111151
Koes R., Verweij W., Quattrocchio F. (2005): Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 10: 236–242.
https://doi.org/10.1016/j.tplants.2005.03.002
Kurt F., Filiz E. (2018): Genome-wide and comparative analysis of bHLH38 bHLH39 bHLH100 and bHLH101 genes in Arabidopsis tomato rice soybean and maize: Insights into iron (Fe) homeostasis. Biometals, 31: 489–504.
https://doi.org/10.1007/s10534-018-0095-5
Le Hir R., Castelain M., Chakraborti D., Moritz T., Dinant S., Bellini C. (2017): At bHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiologia Plantarum, 160: 312–327.
https://doi.org/10.1111/ppl.12549
Li H., Gao W., Xue C., Zhang Y., Liu Z., Zhang Y., Meng X., Liu M., Zhao J. (2019): Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics, 20: 1–13.
Li J., Wang T., Han J., Ren Z. (2020a): Genome-wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber. BMC Plant Biology, 20: 1–20.
Li X., Duan X., Jiang H., Sun Y., Tang Y., Yuan Z., Guo J., Liang W., Chen L., Yin J., Ma H. (2006): Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology, 141: 1167–1184.
https://doi.org/10.1104/pp.106.080580
Li X., Xiang F., Han W., Qie B., Zhai R., Yang C., Wang Z., Xu L. (2021): The MIR-domain of PbbHLH2 is involved in regulation of the anthocyanin biosynthetic pathway in” Red Zaosu”(Pyrus bretschneideri Rehd.) pear fruit. International Journal of Molecular Sciences, 22: 3026.
https://doi.org/10.3390/ijms22063026
Li Y., Xu P., Chen G., Wu J., Liu Z., Lian H. (2020): FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant Cell Physiology, 61: 826–837.
https://doi.org/10.1093/pcp/pcaa010
Ling H.Q., Bauer P., Bereczky Z., Keller B., Ganal M. (2002): The tomato for gene encoding a bHLH protein controls iron-uptake responses in roots. Proceedings of the National Academy of Sciences, 99: 13938–13943.
https://doi.org/10.1073/pnas.212448699
Liu M., Wang J., Wang L., Liu P., Zhao J., Zhao Z., Yao S., Stănică F., Liu Z., Wang L., Ao C. (2020): The historical and current research progress on jujube – A superfruit for the future. Horticulture Research, 7: 1–17.
https://doi.org/10.1038/s41438-020-00346-5
Liu Y., Li X., Li K., Liu H., Lin C. (2013): Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genetics, 9:e1003861.
https://doi.org/10.1371/journal.pgen.1003861
Mao K., Dong Q., Li C., Liu C., Ma F. (2017): Genome-wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Frontiers in Plant Science, 8: 480.
https://doi.org/10.3389/fpls.2017.00480
Miao L., Gao Y., Zhao K., Kong L., Yu S., Li R., Liu K., Yu X. (2020): Comparative analysis of basic helix-loop-helix gene family among Brassica oleracea, Brassica rapa and Brassica napus. BMC Genomics, 21: 1–18.
https://doi.org/10.1186/s12864-020-6572-6
Murre C., McCaw P.S., Baltimore D. (1989): A new DNA binding and dimerization motif in immunoglobulin enhancer binding daughterless MyoD and myc proteins. Cell, 56: 777–783.
https://doi.org/10.1016/0092-8674(89)90682-X
Petroni K., Tonelli C. (2011): Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181: 219–229.
https://doi.org/10.1016/j.plantsci.2011.05.009
Pires N., Dolan L. (2010): Origin and diversification of basic-helix-loop-helix proteins in plants. Molecular Biology and Evolution, 27: 862–874.
https://doi.org/10.1093/molbev/msp288
Qi Y., Zhou L., Han L., Zou H., Miao K., Wang Y. (2020): PsbHLH1 a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiology and Biochemistry, 154: 396–408.
https://doi.org/10.1016/j.plaphy.2020.06.015
Ramsay N.A., Glover B.J. (2005): MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science, 10: 63–70.
https://doi.org/10.1016/j.tplants.2004.12.011
Ren Y.R., Yang Y.Y., Zhao Q., Zhang T.E., Wang C.K., Hao Y.J., You C.X. (2021): MdCIB1 an apple bHLH transcription factor plays a positive regulator in response to drought stress. Environmental and Experimental Botany, 188: 104523.
https://doi.org/10.1016/j.envexpbot.2021.104523
Shang Y., Venail J., Mackay S., Bailey P.C., Schwinn K.E., Jameson P.E., Martin C.R., Davies KM. (2011): The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytologist, 189: 602–615.
https://doi.org/10.1111/j.1469-8137.2010.03498.x
Shen T., Wen X., Wen Z., Qiu Z., Hou Q., Li Z., Mei L., Yu H., Qiao G. (2021): Genome-wide identification and expression analysis of bHLH transcription factor family in response to cold stress in sweet cherry (Prunus avium L.). Scientia Horticulturae, 279: 109905.
https://doi.org/10.1016/j.scienta.2021.109905
Shi Q., Li X., Du J., Li X. (2019): Anthocyanin synthesis and the expression patterns of bHLH transcription factor family during development of the Chinese jujube fruit (Ziziphus jujuba Mill.). Forests, 10: 346.
https://doi.org/10.3390/f10040346
Song C.B., Shan W., Kuang J.F., Chen J.Y., Lu W.J. (2020): The basic helix-loop-helix transcription factor MabHLH7 positively regulates cell wall-modifying-related genes during banana fruit ripening. Postharvest Biology and Technology, 161: 111068.
https://doi.org/10.1016/j.postharvbio.2019.111068
Starkevič P., Paukštytė J., Kazanavičiūtė V., Denkovskienė E., Stanys V., Bendokas V., Šikšnianas T., Ražanskienė A., Ražanskas R. (2015): Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS ONE, 10: e0126991.
Sui N., Wang Y., Liu S., Yang Z., Wang F., Wan S. (2018): Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Frontiers in Plant Science, 9: 7.
https://doi.org/10.3389/fpls.2018.00007
Sun H., Fan H.J., Ling H.Q. (2015): Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics, 16: 1–12.
https://doi.org/10.1186/s12864-014-1209-2
Sun X., Wang Y., Sui N. (2018): Transcriptional regulation of bHLH during plant response to stress. Biochemical and Biophysical Research Communications, 503: 397–401.
https://doi.org/10.1016/j.bbrc.2018.07.123
Sun W., Jin X., Ma Z., Chen H., Liu M. (2020): Basic helix-loop-helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification phylogeny evolutionary expansion and expression analyses. International Journal of Biological Macromolecules, 155: 1478–1490.
https://doi.org/10.1016/j.ijbiomac.2019.11.126
Tian S., Li L., Wei M., Yang F. (2019): Genome-wide analysis of basic helix-loop-helix superfamily members related to anthocyanin biosynthesis in eggplant (Solanum melongena L.). PeerJ, 7: 7768.
https://doi.org/10.7717/peerj.7768
Wang F., Zhu H., Chen D., Li Z., Peng R., Yao, Q. (2016a): A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 125: 387–398.
https://doi.org/10.1007/s11240-016-0953-1
Wang J., Hu Z., Zhao T., Yang Y., Chen T., Yang M., Yu W., Zhang B. (2015): Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genomics, 16: 1–14.
https://doi.org/10.1186/s12864-015-1249-2
Wang L., Tang W., Hu Y., Zhang Y., Sun J., Guo X., Lu H., Yang Y., Fang C., Niu X., Yue J. (2019): A MYB/bHLH complex regulates tissue‐specific anthocyanin biosynthesis in the inner pericarp of red‐centered kiwifruit Actinidia chinensis cv. Hongyang. The Plant Journal, 99: 359–378.
https://doi.org/10.1111/tpj.14330
Wang M., Gao Q.H., Shen J., Wang X.Q., Ji X.L. (2016): The jujube (Ziziphus jujuba Mill,) fruit: A review of current knowledge of fruit composition and health benefits. In: Liu D.H., Ye X.Q., Jiang Y.M. (eds.): Chinese Dates: A Traditional Functional Food. Boca Raton, CRC Press: 53–82.
Wang P., Su L., Gao H., Jiang X., Wu X., Li Y., Zhang Q., Wang Y., Ren F. (2018): Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Frontiers in Plant Science, 9: 64.
https://doi.org/10.3389/fpls.2018.00064
Wang Z., Jia C., Wang J.Y., Miao H.X., Liu J.H., Chen C., Yang H.X., Xu B., Jin Z. (2020): Genome-wide analysis of basic helix-loop-helix transcription factors to elucidate candidate genes related to fruit ripening and stress in Banana (Musa acuminata L. AAA Group cv. Cavendish). Frontiers Plant Science, 11: 650.
https://doi.org/10.3389/fpls.2020.00650
Xiao Y.Y., Kuang J.F., Qi X.N., Ye Y.J., Wu Z.X., Chen J.Y., Lu W.J. (2018): A comprehensive investigation of starch degradation process and identification of a transcriptional activator Mab HLH 6 during banana fruit ripening. Plant Biotechnology Journal, 16: 151–164.
https://doi.org/10.1111/pbi.12756
Xie X.B., Li S., Zhang R.F., Zhao J., Chen Y.C., Zhao Q., Yao Y.X., You C.X., Zhang X.S., Hao Y.J. (2012): The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environment, 35: 1884–1897.
https://doi.org/10.1111/j.1365-3040.2012.02523.x
Xu W., Jiao Y., Li R., Zhang N., Xiao D., Ding X., Wang Z. (2014): Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS ONE, 9: e102303.
Yang M., Zhou C., Yang H., Kuang R., Huang B., Wei Y. (2020): Genome-wide analysis of basic helix-loop-helix transcription factors in papaya (Carica papaya L.). PeerJ, 8: 9319.
https://doi.org/10.7717/peerj.9319
Zhang C., Feng R., Ma R., Shen Z., Cai Z., Song Z., Peng B., Yu M. (2018a): Genome-wide analysis of basic helix-loop-helix superfamily members in peach. PLoS ONE, 13: e0195974.
Zhang T., Lv W., Zhang H., Ma L., Li P., Ge L., Li G. (2018b): Genome-wide analysis of the basic helix-loop-helix (bHLH) transcription factor family in maize. BMC Plant Biology, 18: 1–14.
Zhang Z., Chen J., Liang C., Liu F., Hou X., Zou X. (2020): Genome-wide identification and characterization of the bHLH transcription factor family in pepper (Capsicum annuum L.). Frontiers in Genetics, 11: 1156.
https://doi.org/10.3389/fgene.2020.570156
Zhao F., Li G., Hu P., Zhao X., Li L., Wei W., Feng J., Zhou H. (2018): Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Scientific Reports, 8: 1–15.
https://doi.org/10.1038/s41598-018-21136-z
Zhao M.L., Wang J.N., Shan W., Fan J.G., Kuang J.F., Wu K.Q., Li X.P., Chen W.X., He F.Y., Chen J.Y., Lu W.J. (2013): Induction of jasmonate signalling regulators MaMYC2 s and their physical interactions with MaICE1 in methyl jasmonate‐induced chilling tolerance in banana fruit. Plant, Cell & Environment, 36: 30–51.
Zhao Q., Ren Y.R., Wang Q.J., Yao Y.X., You C.X., Hao Y.J. (2016): Overexpression of Mdb HLH 104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnology Journal, 14: 1633–1645.
https://doi.org/10.1111/pbi.12526
Zhou X., Liao Y., Kim S.U., Chen Z., Nie G., Cheng S., Ye J., Xu F. (2020): Genome-wide identification and characterization of bHLH family genes from Ginkgo biloba. Scientific Reports, 10: 1–15.
https://doi.org/10.1038/s41598-020-69305-3