Diverse role of basic Helix-Loop-Helix (bHLH) transcription factor superfamily genes in the fleshy fruit-bearing plant species

https://doi.org/10.17221/2/2022-CJGPBCitation:

Muhammad N., Uddin N., Khan M.K.U., Ali N., Ali K., Jones D.A. (2023): Diverse role of basic Helix-Loop-Helix (bHLH) transcription factor superfamily genes in the fleshy fruit-bearing plant species. Czech J. Genet. Plant Breed., 59: 1–13.

download PDF

The basic Helix-Loop-Helix (bHLH) superfamily is the most widespread family of transcription factors in eukaryotic organisms, which can activate the expression of genes by interacting with specific promoters in the genes. The bHLH transcription factors direct the development and metabolic process of plants, including flowering initiation and secondary metabolite production, by attaching to specific sites on their promoters. These transcription factors are essential for encouraging plant tolerance or the adjustment to harsh environmental conditions. The involvement of bHLH genes in anthocyanin formation in fleshy fruit-bearing plants, as well as the role of these genes in response to stimuli including drought, salt, and cold stress, are discussed in this article. New concepts and goals for the production of stress-tolerant fruit species are suggested. Furthermore, solid evidence for the critical role of bHLH genes in the growth and development, as well as anthocyanin biosynthesis in fleshy fruit plants, are also presented in this article. This review identifies several future research directions that can shed light on the roles of bHLH genes in fruit-bearing plants and will assist the use of these genes in efforts to breed fruit crop varieties that are more resistant to stress. Generally, there has been little research carried out on the role of bHLHs transcription factor family genes in fleshy fruit-bearing plant species and more in-depth studies are required to fully understand the diverse role of bHLH genes in these species.

References:
Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K. (2006): Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25: 1263–1274. https://doi.org/10.1007/s00299-006-0204-8
 
Aslam M., Jakada B.H., Fakher B., Greaves J.G., Niu X., Su Z., Cheng Y., Cao S., Wang X., Qin Y. (2020): Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (Ac CIB2) participates in flowering time regulation and abiotic stress response. BMC Genomics, 21: 1–13.  https://doi.org/10.1186/s12864-020-07152-2
 
Atchley W.R., Fitch W.M. (1997): A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences, 94: 5172–5176. https://doi.org/10.1073/pnas.94.10.5172
 
Ballester A.R., Molthoff J., de Vos R., te Lintel Hekkert B., Orzaez D., Fernández-Moreno J.P., Tripodi P., Grandillo S., Martin C., Heldens J., Ykema M. (2010): Biochemical and molecular analysis of pink tomatoes: Deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology, 152: 71–84. https://doi.org/10.1104/pp.109.147322
 
Carretero-Paulet L., Galstyan A., Roig-Villanova I., Martínez-García J.F., Bilbao-Castro J.R., Robertson D.L. (2010): Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis poplar rice moss and algae. Plant Physiology, 153: 1398–1412. https://doi.org/10.1104/pp.110.153593
 
Chen L., Chen Y., Jiang J., Chen S., Chen F., Guan, Z., Fang W. (2012): The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Reports, 31: 1747–1758. https://doi.org/10.1007/s00299-012-1288-y
 
Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K. (2003): ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17: 1043–1054.
 
Dong H., Chen Q., Dai Y., Hu W., Zhang S., Huang X. (2021): Genome-wide identification of PbrbHLH family genes and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri). BMC Plant Biolology, 21: 1–20. https://doi.org/10.1186/s12870-021-02862-5
 
Fan Z.Q., Ba L.J., Shan W., Xiao Y.Y., Lu W.J., Kuang J.F., Chen J.Y. (2018): A banana R2R3‐MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation‐related genes and MabHLH6. The Plant Journal, 96: 1191–1205. https://doi.org/10.1111/tpj.14099
 
Feller A., Machemer K., Braun E.L., Grotewold E. (2011): Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66: 94–116. https://doi.org/10.1111/j.1365-313X.2010.04459.x
 
Feng F., Li M., Ma F., Cheng L. (2013): Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiology and Biochemistry, 69: 54–61. https://doi.org/10.1016/j.plaphy.2013.04.020
 
Feng X.M., Zhao Q., Zhao L.L., Qiao Y., Xie X.B., Li H.F., Yao Y.X., You C.X., Hao Y.J. (2012): The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biology, 12: 1–14.  https://doi.org/10.1186/1471-2229-12-22
 
Feng X., An Y., Zheng J., Sun M., Wang L. (2016): Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-box gene, MdMADS1. Frontiers in Plant Science, 7: 1615. https://doi.org/10.3389/fpls.2016.01615
 
Gao Y., Liu J., Chen Y., Tang H., Wang Y., He Y., Ou Y., Sun X., Wang S., Yao Y. (2018): Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Horticulture Research, 5: 1–18.  https://doi.org/10.1038/s41438-018-0032-3
 
Guo J., Sun B., He H., Zhang Y., Tian H., Wang B. (2021): Current understanding of bHLH transcription factors in plant abiotic stress tolerance. International Journal of Molecular Sciences, 22: 4921. https://doi.org/10.3390/ijms22094921
 
Huang X., Li K., Jin C., Zhang S. (2015): ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Scientific Reports, 5: 1–16. https://doi.org/10.1038/srep17620
 
Jezek M., Zörb C., Merkt N., Geilfus C.M. (2018): Anthocyanin management in fruits by fertilization. Journal of Agricultural and Food Chemistry, 66: 753–764. https://doi.org/10.1021/acs.jafc.7b03813
 
Kavas M., Baloğlu M.C., Atabay E.S., Ziplar U.T., Daşgan H.Y., Ünver T. (2016): Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Molecular Genetics and Genomics, 291: 129–143. https://doi.org/10.1007/s00438-015-1095-6
 
Kayesh E., Shangguan L., Korir N.K., Sun X., Bilkish N., Zhang Y., Han J., Song C., Cheng Z.M., Fang J. (2013): Fruit skin color and the role of anthocyanin. Acta Physiologiae Plantarum, 35: 2879–2890. https://doi.org/10.1007/s11738-013-1332-8
 
Khan I.A., Cao K., Guoa J., Li Y., Wang Q., Yang X., Wu J., Fang W., Wang L. (2022): Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. Plant Science, 316: 111151. https://doi.org/10.1016/j.plantsci.2021.111151
 
Koes R., Verweij W., Quattrocchio F. (2005): Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 10: 236–242. https://doi.org/10.1016/j.tplants.2005.03.002
 
Kurt F., Filiz E. (2018): Genome-wide and comparative analysis of bHLH38 bHLH39 bHLH100 and bHLH101 genes in Arabidopsis tomato rice soybean and maize: Insights into iron (Fe) homeostasis. Biometals, 31: 489–504. https://doi.org/10.1007/s10534-018-0095-5
 
Le Hir R., Castelain M., Chakraborti D., Moritz T., Dinant S., Bellini C. (2017): At bHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiologia Plantarum, 160: 312–327.  https://doi.org/10.1111/ppl.12549
 
Li H., Gao W., Xue C., Zhang Y., Liu Z., Zhang Y., Meng X., Liu M., Zhao J. (2019): Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics, 20: 1–13.
 
Li J., Wang T., Han J., Ren Z. (2020a): Genome-wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber. BMC Plant Biology, 20: 1–20.
 
Li X., Duan X., Jiang H., Sun Y., Tang Y., Yuan Z., Guo J., Liang W., Chen L., Yin J., Ma H. (2006): Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology, 141: 1167–1184. https://doi.org/10.1104/pp.106.080580
 
Li X., Xiang F., Han W., Qie B., Zhai R., Yang C., Wang Z., Xu L. (2021): The MIR-domain of PbbHLH2 is involved in regulation of the anthocyanin biosynthetic pathway in” Red Zaosu”(Pyrus bretschneideri Rehd.) pear fruit. International Journal of Molecular Sciences, 22: 3026. https://doi.org/10.3390/ijms22063026
 
Li Y., Xu P., Chen G., Wu J., Liu Z., Lian H. (2020): FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant Cell Physiology, 61: 826–837.  https://doi.org/10.1093/pcp/pcaa010
 
Ling H.Q., Bauer P., Bereczky Z., Keller B., Ganal M. (2002): The tomato for gene encoding a bHLH protein controls iron-uptake responses in roots. Proceedings of the National Academy of Sciences, 99: 13938–13943.  https://doi.org/10.1073/pnas.212448699
 
Liu M., Wang J., Wang L., Liu P., Zhao J., Zhao Z., Yao S., Stănică F., Liu Z., Wang L., Ao C. (2020): The historical and current research progress on jujube – A superfruit for the future. Horticulture Research, 7: 1–17. https://doi.org/10.1038/s41438-020-00346-5
 
Liu Y., Li X., Li K., Liu H., Lin C. (2013): Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genetics, 9:e1003861. https://doi.org/10.1371/journal.pgen.1003861
 
Mao K., Dong Q., Li C., Liu C., Ma F. (2017): Genome-wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Frontiers in Plant Science, 8: 480.  https://doi.org/10.3389/fpls.2017.00480
 
Miao L., Gao Y., Zhao K., Kong L., Yu S., Li R., Liu K., Yu X. (2020): Comparative analysis of basic helix-loop-helix gene family among Brassica oleracea, Brassica rapa and Brassica napus. BMC Genomics, 21: 1–18. https://doi.org/10.1186/s12864-020-6572-6
 
Murre C., McCaw P.S., Baltimore D. (1989): A new DNA binding and dimerization motif in immunoglobulin enhancer binding daughterless MyoD and myc proteins. Cell, 56: 777–783. https://doi.org/10.1016/0092-8674(89)90682-X
 
Petroni K., Tonelli C. (2011): Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181: 219–229.  https://doi.org/10.1016/j.plantsci.2011.05.009
 
Pires N., Dolan L. (2010): Origin and diversification of basic-helix-loop-helix proteins in plants. Molecular Biology and Evolution, 27: 862–874. https://doi.org/10.1093/molbev/msp288
 
Qi Y., Zhou L., Han L., Zou H., Miao K., Wang Y. (2020): PsbHLH1 a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiology and Biochemistry, 154: 396–408. https://doi.org/10.1016/j.plaphy.2020.06.015
 
Ramsay N.A., Glover B.J. (2005): MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science, 10: 63–70. https://doi.org/10.1016/j.tplants.2004.12.011
 
Ren Y.R., Yang Y.Y., Zhao Q., Zhang T.E., Wang C.K., Hao Y.J., You C.X. (2021): MdCIB1 an apple bHLH transcription factor plays a positive regulator in response to drought stress. Environmental and Experimental Botany, 188: 104523. https://doi.org/10.1016/j.envexpbot.2021.104523
 
Shang Y., Venail J., Mackay S., Bailey P.C., Schwinn K.E., Jameson P.E., Martin C.R., Davies KM. (2011): The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytologist, 189: 602–615. https://doi.org/10.1111/j.1469-8137.2010.03498.x
 
Shen T., Wen X., Wen Z., Qiu Z., Hou Q., Li Z., Mei L., Yu H., Qiao G. (2021): Genome-wide identification and expression analysis of bHLH transcription factor family in response to cold stress in sweet cherry (Prunus avium L.). Scientia Horticulturae, 279: 109905. https://doi.org/10.1016/j.scienta.2021.109905
 
Shi Q., Li X., Du J., Li X. (2019): Anthocyanin synthesis and the expression patterns of bHLH transcription factor family during development of the Chinese jujube fruit (Ziziphus jujuba Mill.). Forests, 10: 346.  https://doi.org/10.3390/f10040346
 
Song C.B., Shan W., Kuang J.F., Chen J.Y., Lu W.J. (2020): The basic helix-loop-helix transcription factor MabHLH7 positively regulates cell wall-modifying-related genes during banana fruit ripening. Postharvest Biology and Technology, 161: 111068. https://doi.org/10.1016/j.postharvbio.2019.111068
 
Starkevič P., Paukštytė J., Kazanavičiūtė V., Denkovskienė E., Stanys V., Bendokas V., Šikšnianas T., Ražanskienė A., Ražanskas R. (2015): Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS ONE, 10: e0126991.
 
Sui N., Wang Y., Liu S., Yang Z., Wang F., Wan S. (2018): Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Frontiers in Plant Science, 9: 7.  https://doi.org/10.3389/fpls.2018.00007
 
Sun H., Fan H.J., Ling H.Q. (2015): Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics, 16: 1–12.  https://doi.org/10.1186/s12864-014-1209-2
 
Sun X., Wang Y., Sui N. (2018): Transcriptional regulation of bHLH during plant response to stress. Biochemical and Biophysical Research Communications, 503: 397–401. https://doi.org/10.1016/j.bbrc.2018.07.123
 
Sun W., Jin X., Ma Z., Chen H., Liu M. (2020): Basic helix-loop-helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification phylogeny evolutionary expansion and expression analyses. International Journal of Biological Macromolecules, 155: 1478–1490. https://doi.org/10.1016/j.ijbiomac.2019.11.126
 
Tian S., Li L., Wei M., Yang F. (2019): Genome-wide analysis of basic helix-loop-helix superfamily members related to anthocyanin biosynthesis in eggplant (Solanum melongena L.). PeerJ, 7: 7768.  https://doi.org/10.7717/peerj.7768
 
Wang F., Zhu H., Chen D., Li Z., Peng R., Yao, Q. (2016a): A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 125: 387–398. https://doi.org/10.1007/s11240-016-0953-1
 
Wang J., Hu Z., Zhao T., Yang Y., Chen T., Yang M., Yu W., Zhang B. (2015): Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genomics, 16: 1–14. https://doi.org/10.1186/s12864-015-1249-2
 
Wang L., Tang W., Hu Y., Zhang Y., Sun J., Guo X., Lu H., Yang Y., Fang C., Niu X., Yue J. (2019): A MYB/bHLH complex regulates tissue‐specific anthocyanin biosynthesis in the inner pericarp of red‐centered kiwifruit Actinidia chinensis cv. Hongyang. The Plant Journal, 99: 359–378.  https://doi.org/10.1111/tpj.14330
 
Wang M., Gao Q.H., Shen J., Wang X.Q., Ji X.L. (2016): The jujube (Ziziphus jujuba Mill,) fruit: A review of current knowledge of fruit composition and health benefits. In: Liu D.H., Ye X.Q., Jiang Y.M. (eds.): Chinese Dates: A Traditional Functional Food. Boca Raton, CRC Press: 53–82.
 
Wang P., Su L., Gao H., Jiang X., Wu X., Li Y., Zhang Q., Wang Y., Ren F. (2018): Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Frontiers in Plant Science, 9: 64. https://doi.org/10.3389/fpls.2018.00064
 
Wang Z., Jia C., Wang J.Y., Miao H.X., Liu J.H., Chen C., Yang H.X., Xu B., Jin Z. (2020): Genome-wide analysis of basic helix-loop-helix transcription factors to elucidate candidate genes related to fruit ripening and stress in Banana (Musa acuminata L. AAA Group cv. Cavendish). Frontiers Plant Science, 11: 650. https://doi.org/10.3389/fpls.2020.00650
 
Xiao Y.Y., Kuang J.F., Qi X.N., Ye Y.J., Wu Z.X., Chen J.Y., Lu W.J. (2018): A comprehensive investigation of starch degradation process and identification of a transcriptional activator Mab HLH 6 during banana fruit ripening. Plant Biotechnology Journal, 16: 151–164.  https://doi.org/10.1111/pbi.12756
 
Xie X.B., Li S., Zhang R.F., Zhao J., Chen Y.C., Zhao Q., Yao Y.X., You C.X., Zhang X.S., Hao Y.J. (2012): The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environment, 35: 1884–1897.  https://doi.org/10.1111/j.1365-3040.2012.02523.x
 
Xu W., Jiao Y., Li R., Zhang N., Xiao D., Ding X., Wang Z. (2014): Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS ONE, 9: e102303.
 
Yang M., Zhou C., Yang H., Kuang R., Huang B., Wei Y. (2020): Genome-wide analysis of basic helix-loop-helix transcription factors in papaya (Carica papaya L.). PeerJ, 8: 9319.  https://doi.org/10.7717/peerj.9319
 
Zhang C., Feng R., Ma R., Shen Z., Cai Z., Song Z., Peng B., Yu M. (2018a): Genome-wide analysis of basic helix-loop-helix superfamily members in peach. PLoS ONE, 13: e0195974.
 
Zhang T., Lv W., Zhang H., Ma L., Li P., Ge L., Li G. (2018b): Genome-wide analysis of the basic helix-loop-helix (bHLH) transcription factor family in maize. BMC Plant Biology, 18: 1–14.
 
Zhang Z., Chen J., Liang C., Liu F., Hou X., Zou X. (2020): Genome-wide identification and characterization of the bHLH transcription factor family in pepper (Capsicum annuum L.). Frontiers in Genetics, 11: 1156. https://doi.org/10.3389/fgene.2020.570156
 
Zhao F., Li G., Hu P., Zhao X., Li L., Wei W., Feng J., Zhou H. (2018): Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Scientific Reports, 8: 1–15. https://doi.org/10.1038/s41598-018-21136-z
 
Zhao M.L., Wang J.N., Shan W., Fan J.G., Kuang J.F., Wu K.Q., Li X.P., Chen W.X., He F.Y., Chen J.Y., Lu W.J. (2013): Induction of jasmonate signalling regulators MaMYC2 s and their physical interactions with MaICE1 in methyl jasmonate‐induced chilling tolerance in banana fruit. Plant, Cell & Environment, 36: 30–51.
 
Zhao Q., Ren Y.R., Wang Q.J., Yao Y.X., You C.X., Hao Y.J. (2016): Overexpression of Mdb HLH 104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnology Journal, 14: 1633–1645.  https://doi.org/10.1111/pbi.12526
 
Zhou X., Liao Y., Kim S.U., Chen Z., Nie G., Cheng S., Ye J., Xu F. (2020): Genome-wide identification and characterization of bHLH family genes from Ginkgo biloba. Scientific Reports, 10: 1–15. https://doi.org/10.1038/s41598-020-69305-3
 
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti