Effects of washing procedures in reducing Listeria monocytogenes on raw leafy vegetables

https://doi.org/10.17221/98/2022-CJFSCitation:

Giang N.T.H., Nor-Khaizura M.A.R., Mahyudin N.A., Vu T.L.A. (2022): Effects of washing procedures in reducing Listeria monocytogenes on raw leafy vegetables. Czech J. Food Sci., 40: 422–426.

download PDF

The efficacy of potable water and antimicrobial agents, including turmeric extract, black pepper extract, sodium chloride and sodium bicarbonate, in reducing Listeria monocytogenes on the leaf mustard (Brassica integrifolia) and iceberg lettuce (Lactuca sativa L.) was compared. The uncontaminated samples of two raw leafy vegetables were inoculated with L. monocytogenes at a concentration of 5 log and 7 log colony-forming units (CFU) g–1 for 1 h. At the high L. monocytogenes contamination level, the treatment with black pepper extract 0.6 mg mL–1 for 5 min was found to produce the most considerable decrease in L. monocytogenes counts, resulting in 1.44 log and 1.68 log reduction on leaf mustard and iceberg lettuce, respectively. Similarly, the black pepper extract also showed the highest L. monocytogenes reduction, approximately 0.79 log CFU g–1 on two leafy vegetables at the low contamination level. However, the odour of black pepper extract was left on the vegetables after being washed.

References:
Agourram A., Ghirardello D., Rantsiou K., Zeppa G., Belviso S., Romane A., Oufdou K., Giordano M. (2013): Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties, 16: 1092–1104. https://doi.org/10.1080/10942912.2011.576446
 
Beuchat L.R. (1996): Listeria monocytogenes: Incidence on vegetables. Food Control, 7: 223–228. https://doi.org/10.1016/S0956-7135(96)00039-4
 
Burt S. (2004): Essential oils: Their antibacterial properties and potential applications in foods – A review. International Journal of Food Microbiology, 94: 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
 
CDC (2011): Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado (Final Update). Centers for Disease Control and Prevention (CDC), Atlanta, US. Available at http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html (accessed July 7, 2017).
 
CDC (2016): Multistate Outbreak of Listeriosis Linked to Packaged Salads Produced at Springfield, Ohio Dole Processing Facility (Final Update). Centers for Disease Control and Prevention (CDC), Atlanta, US. Available at http://www.cdc.gov/listeria/outbreaks/bagged-salads-01-16/index.html (accessed July 7, 2017).
 
Cliver D.O., Ellender R.D., Fout G.S., Shields P.A., Sobsey M.D. (1992): Foodborne viruses. In: Vanderzant S.C., Splittstoesser D.F. (eds). Compendium of methods for the microbiological examination of foods. 3. Washington, DC, USA, American Public Health Association: 763–787.
 
Cowan M.M. (1999): Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12: 564–582. https://doi.org/10.1128/CMR.12.4.564
 
EFSA, ECDC (2021): European Union One Health 2020 Zoonoses Report. European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC). EFSA Journal, 19: e06971.
 
Hitchins A., Jinneman K., Chen Y. (2017): Detection and Enumeration of Listeria monocytogenes in Foods. Bacteriological Analytical Manual (BAM). Washington, D.C., US, United State Food and Drug Administration. Available at https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-monocytogenes-foods-and-environmental-samples-and-enumeration (accessed Aug 20, 2021).
 
Kang J.H., Song K.B. (2017): Effect of pomegranate (Punica granatum) pomace extract as a washing agent on the inactivation of Listeria monocytogenes inoculated on fresh produce. International Journal of Food Science & Technology, 52: 2295–2302.
 
Khan J.A., Rathore R.S., Khan S., Hussain F.M., Ahmad I. (2016): Role of Listeria monocytogenes in human health: Disadvantages and advantages. In: Gupta V.K., Sharma G.D., Tuohy M.G., Gaur R. (eds.): The Handbook of Microbial Bioresources. Oxfordshire, United Kingdom, CABI: 193.
 
McFarland J. (1907): The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association, 49: 1176–1178. https://doi.org/10.1001/jama.1907.25320140022001f
 
Meireles A., Giaouris E., Simões M. (2016): Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 82: 71–85. https://doi.org/10.1016/j.foodres.2016.01.021
 
Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. (2013): Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6: 1451–1474. https://doi.org/10.3390/ph6121451
 
Pezzuto A., Belluco S., Losasso C., Patuzzi I., Bordin P., Piovesana A., Comin D., Mioni R., Ricci A. (2016): Effectiveness of washing procedures in reducing Salmonella enterica and Listeria monocytogenes on a raw leafy green vegetable (Eruca vesicaria). Frontiers in Microbiology, 7: 1663. https://doi.org/10.3389/fmicb.2016.01663
 
Ragaert P., Devlieghere F., Debevere J. (2007): Role of microbiological and physiological spoilage mechanisms during storage of minimally processed vegetables. Postharvest Biology and Technology, 44: 185–194. https://doi.org/10.1016/j.postharvbio.2007.01.001
 
Schlech III W.F., Lavigne P.M., Bortolussi R.A., Allen A.C., Haldane E.V., Wort A.J., Hightower A.W., Johnson S.E., King S.H., Nicholls E.S. (1983): Epidemic listeriosis evidence for transmission by food. New England Journal of Medicine, 308: 203–206. https://doi.org/10.1056/NEJM198301273080407
 
Taormina P., Beuchat L. (2001): Survival and heat resistance of Listeria monocytogenes after exposure to alkali and chlorine. Applied and Environmental Microbiology, 67: 2555–2563. https://doi.org/10.1128/AEM.67.6.2555-2563.2001
 
Zou L., Hu Y.Y., Chen W.X. (2015): Antibacterial mechanism and activities of black pepper chloroform extract. Journal of Food Science and Technology, 52: 8196–8203. https://doi.org/10.1007/s13197-015-1914-0
 
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti