Functional profile of carob (Ceratonia siliqua L.) beans and pod pulp originated from the Republic of Moldova

https://doi.org/10.17221/139/2022-CJFSCitation:

Capcanari T., Chirsanova A., Radu O., Covaliov E., Popovici V., Siminiuc R. (2022): Functional profile of carob (Ceratonia Siliqua L.) beans and pod pulp originated from the Republic of Moldova. Czech J. Food Sci., 40: 465–473.

download PDF

This study provides the first insight into the biologically active potential (total phenolic compounds, flavonoids, tannins and antioxidant activity) of Moldavian сarob beans and pod pulp in comparison with carob grown in Algeria, Spain, and Italy. The results showed that the samples of Moldavian carob contain significant amounts (P ≤ 0.05) of biologically active compounds, the content of some of these compounds is far exceeding that of сarob from the above-mentioned regions. Thus, the total content of phenolic compounds in Moldavian carob samples is 1.4 times higher, of flavonoids 1.9 times higher compared to the imported ones. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) antioxidant activity of Moldavian carob samples proved to be about 10–12% higher than the antioxidant activity of samples from other regions. It has been proved that Moldavian carob pod pulp and beans have a high biologically active potential making them possible ingredients for functional food products.

References:
Aissani N., Coroneo V., Fattouch S., Caboni P. (2012). Inhibitory effect of carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 60: 9954−9958. https://doi.org/10.1021/jf3029623
 
Atasoy A.F. (2009). The effects of carob juice concentrates on the properties of yoghurt. International Journal of Dairy Technology, 62: 228–233. https://doi.org/10.1111/j.1471-0307.2009.00465.x
 
Baumel A., Mirleau P., Viruel J., Bou Dagher Kharrat M., La Malfa S., Ouahmane L., Diadema K., Moakhar M., Sanguin H., Médail F. (2018). Assessment of plant species diversity associated with the carob tree (Ceratonia siliqua, Fabaceae) at the Mediterranean scale. Plant Ecology and Evolution, 151: 185–93. https://doi.org/10.5091/plecevo.2018.1423
 
Berrougui H., Loued S., Elghmari A., Bouadili A., Haddadi B., Khalil A. (2008). Antiatherogenic effect of Ceratonia Siliqua L. extract: inhibition of lipid peroxidation, inflammation and enhancement of cholesterol efflux. Chemistry and Physics of Lipids, 154: 53–56.
 
Biernacka B., Dziki D., Gawlik-Dziki U., Rózyło R., Siastała M. (2017). Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT – Food Science and Technology, 77: 186–192. https://doi.org/10.1016/j.lwt.2016.11.042
 
Boublenza I., Ghezlaoui S., Mahdad M., Vasaï F., Chemat F. (2019). Algerian carob (Ceratonia siliqua L.) populations. Morphological and chemical variability of their fruits and seeds. Scientia Horticulturae, 256: 108537.
 
Brglez M.E., Knez H.M., Škerget M., Knez Ž., Bren U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 7: 901. https://doi.org/10.3390/molecules21070901
 
Cristea E., Sturza R., Jauregi P., Niculaua M., Anu AG., Patras A. (2019). Influence of pH and ionic strength on the color parameters and antioxidant properties of an ethanolic red grape marc extract. Journal of Food Biochemistry, 43: e12788. https://doi.org/10.1111/jfbc.12788
 
Di Guardo M., Scollo F., Ninot A. (2019). Genetic structure analysis and selection of a core collection for carob tree germplasm conservation and management. Tree Genetics & Genomes, 3: 41.
 
Gilbert L., Vincent L., Géraldine S., Michel G., Céline P. (2013). Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions. Carbohydrate Polymers, 2: 644–650. https://doi.org/10.1016/j.carbpol.2012.12.028
 
Khasnabis J., Rai C., Roy A. (2015). Determination of tannin content by titrimetric method from different types of tea. Journal of Chemical and Pharmaceutical Research, 7: 238–241.
 
Krokou A., Stylianou M., Agapiou A. (2019). Assessing the volatile profile of carob tree (Ceratonia siliqua L.). Environmental Science and Pollution Research, 26: 35365–35374. https://doi.org/10.1007/s11356-019-04664-7
 
Kumazawa S., Taniguchi M., Suzuki Y., Shimura M., Kwon M.S., Nakayama T. (2002). Antioxidant activity of polyphenols in carob pods. Journal of Agricultural and Food Chemistry, 50: 373–377. https://doi.org/10.1021/jf010938r
 
Lindsay T. A., Luis S., Toni M., Joan R., Andy H. (2006). Seed size variability: from carob to carats. Biology Letters, 2: 397–400. https://doi.org/10.1098/rsbl.2006.0476
 
Loganayaki N., Siddhuraju P., Manian S. (2013). Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. Journal of Food Science and Technology, 50: 687–695. https://doi.org/10.1007/s13197-011-0389-x
 
Moreira T.C., da Silva A.T., Fagundes C., Ferreira S.M., Cândido L.M., Passos M., Krüger C.C. (2017). Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L). LWT – Food Science and Technology, 76: 326–329. https://doi.org/10.1016/j.lwt.2016.08.033
 
Mokhtari M., Sharifi S., Tabatabaee M. S. (2011). The effect of hydro–alcoholic seeds extract of Ceratonia siliqua on the blood glucose and lipids concentration in diabetic male rats. 2011 International Conference on Life Science and Technology IPCBEE, 3: 82–86.
 
Morton L.W., Caccetta R.A., Puddey I.B., Croft K.D. (2000). Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clinical and experimental pharmacology and physiology, 27: 152–159. https://doi.org/10.1046/j.1440-1681.2000.03214.x
 
Musci M., Yao S. (2017). Optimization and validation of Folin-Ciocalteu method for the determination of total polyphenol content of Pu-erh tea. International Journal of Food Sciences and Nutrition, 68: 913–918. https://doi.org/10.1080/09637486.2017.1311844
 
Narin B., Sungurlu F., Balci A., Arman A., Kurdas O. O., Simsek M., Saudi J. (2009). Comparison of MR enteroclysis with colonoscopy in Crohn's disease – first locust bean gum study from Turkey. Saudi Journal of Gastroenterology, 15: 253–257. https://doi.org/10.4103/1319-3767.56104
 
Piluzza G., Molinu M.G., Re G.A., Sulas L. (2020). Phenolic compounds content and antioxidant capacity in cardoon achenes from different head orders. Natural Product Research, 34: 2071–2075. https://doi.org/10.1080/14786419.2019.1569009
 
Popovici V., Radu O., Hubenia V., Covaliov E., Capcanari T., Popovici C. (2019). Physico-chemical and sensory properties of functional confectionery products with Rosa Canina powder. Ukrainian Food Journal, 8: 815–827. https://doi.org/10.24263/2304-974X-2019-8-4-12
 
Pretsch E., Bühlmann P., Badertscher M. (2020). Structure determination of organic compounds: Tables of Spectral Data. Berlin, Heidelberg, Springer-Verlag: 174.
 
Rasheed D.M., El-Kersh D.M., Farag M.A. (2019). Ceratonia siliqua (carob-locust bean) outgoing and potential trends of phytochemical, economic and medicinal merits. In: Mariod, A. (ed.): Wild Fruits: Composition, Nutritional Value and Products. Springer, Cham: 481–498.
 
Rtibi K., Slimen S., Dhekra G., Amri M., Eto B., El-benna J., Sebai H., Marzouki L. (2017). Chemical constituents and pharmacological actions of carob pods and leaves (Ceratonia Siliqua L.) on the gastrointestinal tract: A review. Biomedicine & Pharmacotherapy, 93: 522–28.
 
Roukas T. and Biliaderis C.G. (1995). Evaluation of carob pod as a substrate for pullulan production byaureobasidium pullulans. Applied Biochemistry and Biotechnology, 55: 27–44. https://doi.org/10.1007/BF02788746
 
Sęczyk Ł., Świeca M., Gawlik-Dziki U. (2016). Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chemistry, 194: 637–642.
 
Sharma O.P., Bhat T.K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113: 1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008
 
Singh G., Passsari A. K., Leo V. V., Mishra V. K., Subbarayan S., Singh B. P., Kumar B., Kumar S., Gupta V. K., Lalhlenmawia H., Nachimuthu S. K. (2016). Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Frontiers in Plant Science,7: 407. https://doi.org/10.3389/fpls.2016.00407
 
Solar A., Colarič M., Usenik V., Stampar F. (2006). Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L). Plant Science, 170: 453–461. https://doi.org/10.1016/j.plantsci.2005.09.012
 
Srecec S., Dunkic V., Bezic N., Kremer D., Erhatic R. (2018). Some doubts and controversies about anatomy of carob (Ceratonia siliqua L.) seed coat. Genetics, Plant Breeding and Seed Production. In: 53rd Croatian & 13th international Symposium on Agriculture, Jun 18–23, 2018, Vodice: 216–219.
 
Tsatsaragkou, K., Gounaropoulos, G., Mandala, I. (2015) Development of gluten free bread containing carob flour and resistant starch. LWT – Food Science and Technology, 58: 124–129. https://doi.org/10.1016/j.lwt.2014.02.043
 
download PDF

© 2023 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti